| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashresfn |
⊢ ( ♯ ↾ ω ) Fn ω |
| 2 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) Fn ω |
| 3 |
|
eqfnfv |
⊢ ( ( ( ♯ ↾ ω ) Fn ω ∧ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) Fn ω ) → ( ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ↔ ∀ 𝑦 ∈ ω ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑦 ) ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ↔ ∀ 𝑦 ∈ ω ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑦 ) ) |
| 5 |
|
fvres |
⊢ ( 𝑦 ∈ ω → ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ♯ ‘ 𝑦 ) ) |
| 6 |
|
nnfi |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ Fin ) |
| 7 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
| 8 |
7
|
hashgval |
⊢ ( 𝑦 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝑦 ) ) = ( ♯ ‘ 𝑦 ) ) |
| 9 |
6 8
|
syl |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝑦 ) ) = ( ♯ ‘ 𝑦 ) ) |
| 10 |
|
cardnn |
⊢ ( 𝑦 ∈ ω → ( card ‘ 𝑦 ) = 𝑦 ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝑦 ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑦 ) ) |
| 12 |
5 9 11
|
3eqtr2d |
⊢ ( 𝑦 ∈ ω → ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑦 ) ) |
| 13 |
4 12
|
mprgbir |
⊢ ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |