| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 2 |
|
eldif |
⊢ ( 𝐴 ∈ ( V ∖ Fin ) ↔ ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) ) |
| 3 |
|
df-hash |
⊢ ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |
| 4 |
3
|
reseq1i |
⊢ ( ♯ ↾ ( V ∖ Fin ) ) = ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) ↾ ( V ∖ Fin ) ) |
| 5 |
|
resundir |
⊢ ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) ↾ ( V ∖ Fin ) ) = ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) ∪ ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) ) |
| 6 |
|
disjdif |
⊢ ( Fin ∩ ( V ∖ Fin ) ) = ∅ |
| 7 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
| 8 |
|
eqid |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) |
| 9 |
7 8
|
hashkf |
⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 |
| 10 |
|
ffn |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) Fn Fin ) |
| 11 |
|
fnresdisj |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) Fn Fin → ( ( Fin ∩ ( V ∖ Fin ) ) = ∅ ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) = ∅ ) ) |
| 12 |
9 10 11
|
mp2b |
⊢ ( ( Fin ∩ ( V ∖ Fin ) ) = ∅ ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) = ∅ ) |
| 13 |
6 12
|
mpbi |
⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) = ∅ |
| 14 |
|
pnfex |
⊢ +∞ ∈ V |
| 15 |
14
|
fconst |
⊢ ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } |
| 16 |
|
ffn |
⊢ ( ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } → ( ( V ∖ Fin ) × { +∞ } ) Fn ( V ∖ Fin ) ) |
| 17 |
|
fnresdm |
⊢ ( ( ( V ∖ Fin ) × { +∞ } ) Fn ( V ∖ Fin ) → ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) = ( ( V ∖ Fin ) × { +∞ } ) ) |
| 18 |
15 16 17
|
mp2b |
⊢ ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) = ( ( V ∖ Fin ) × { +∞ } ) |
| 19 |
13 18
|
uneq12i |
⊢ ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) ∪ ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) ) = ( ∅ ∪ ( ( V ∖ Fin ) × { +∞ } ) ) |
| 20 |
|
uncom |
⊢ ( ∅ ∪ ( ( V ∖ Fin ) × { +∞ } ) ) = ( ( ( V ∖ Fin ) × { +∞ } ) ∪ ∅ ) |
| 21 |
|
un0 |
⊢ ( ( ( V ∖ Fin ) × { +∞ } ) ∪ ∅ ) = ( ( V ∖ Fin ) × { +∞ } ) |
| 22 |
19 20 21
|
3eqtri |
⊢ ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ↾ ( V ∖ Fin ) ) ∪ ( ( ( V ∖ Fin ) × { +∞ } ) ↾ ( V ∖ Fin ) ) ) = ( ( V ∖ Fin ) × { +∞ } ) |
| 23 |
4 5 22
|
3eqtri |
⊢ ( ♯ ↾ ( V ∖ Fin ) ) = ( ( V ∖ Fin ) × { +∞ } ) |
| 24 |
23
|
fveq1i |
⊢ ( ( ♯ ↾ ( V ∖ Fin ) ) ‘ 𝐴 ) = ( ( ( V ∖ Fin ) × { +∞ } ) ‘ 𝐴 ) |
| 25 |
|
fvres |
⊢ ( 𝐴 ∈ ( V ∖ Fin ) → ( ( ♯ ↾ ( V ∖ Fin ) ) ‘ 𝐴 ) = ( ♯ ‘ 𝐴 ) ) |
| 26 |
14
|
fvconst2 |
⊢ ( 𝐴 ∈ ( V ∖ Fin ) → ( ( ( V ∖ Fin ) × { +∞ } ) ‘ 𝐴 ) = +∞ ) |
| 27 |
24 25 26
|
3eqtr3a |
⊢ ( 𝐴 ∈ ( V ∖ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 28 |
2 27
|
sylbir |
⊢ ( ( 𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
| 29 |
1 28
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |