Step |
Hyp |
Ref |
Expression |
1 |
|
hashnn0pnf |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) ) |
2 |
|
df-nel |
⊢ ( ( ♯ ‘ 𝐴 ) ∉ ℕ0 ↔ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
3 |
2
|
anbi2i |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) ↔ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
4 |
|
pm5.61 |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ↔ ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
5 |
3 4
|
sylbb |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
6 |
5
|
ex |
⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∨ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) ∉ ℕ0 → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) ) |
7 |
6
|
orcoms |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) → ( ( ♯ ‘ 𝐴 ) ∉ ℕ0 → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) ) |
8 |
1 7
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∉ ℕ0 → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) ) |
9 |
8
|
imp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
10 |
9
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) ) |
11 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( +∞ +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
12 |
|
hashxrcl |
⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
13 |
|
hashnemnf |
⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ 𝐵 ) ≠ -∞ ) |
14 |
12 13
|
jca |
⊢ ( 𝐵 ∈ 𝑊 → ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ≠ -∞ ) ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ≠ -∞ ) ) |
16 |
|
xaddpnf2 |
⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ≠ -∞ ) → ( +∞ +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( +∞ +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
18 |
11 17
|
sylan9eqr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) ∧ ( ♯ ‘ 𝐴 ) = +∞ ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
19 |
18
|
expcom |
⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) ) |
20 |
19
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∧ ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) ) |
21 |
10 20
|
mpcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |