Step |
Hyp |
Ref |
Expression |
1 |
|
fsumiun.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fsumiun.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
3 |
|
fsumiun.3 |
⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) |
4 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 1 ∈ ℂ ) |
5 |
1 2 3 4
|
fsumiun |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 1 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 1 ) |
6 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
7 |
|
iunfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
8 |
1 6 7
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
9 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
10 |
|
fsumconst |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 1 = ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) · 1 ) ) |
11 |
8 9 10
|
sylancl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 1 = ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) · 1 ) ) |
12 |
|
hashcl |
⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ ℕ0 ) |
13 |
|
nn0cn |
⊢ ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ ℕ0 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ ℂ ) |
14 |
|
mulid1 |
⊢ ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ ℂ → ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) · 1 ) = ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
15 |
8 12 13 14
|
4syl |
⊢ ( 𝜑 → ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) · 1 ) = ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
16 |
11 15
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 1 = ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
17 |
|
fsumconst |
⊢ ( ( 𝐵 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐵 ) · 1 ) ) |
18 |
2 9 17
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐵 ) · 1 ) ) |
19 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
20 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
21 |
|
mulid1 |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℂ → ( ( ♯ ‘ 𝐵 ) · 1 ) = ( ♯ ‘ 𝐵 ) ) |
22 |
2 19 20 21
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐵 ) · 1 ) = ( ♯ ‘ 𝐵 ) ) |
23 |
18 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 1 = ( ♯ ‘ 𝐵 ) ) |
24 |
23
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 1 = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝐵 ) ) |
25 |
5 16 24
|
3eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝐵 ) ) |