Step |
Hyp |
Ref |
Expression |
1 |
|
hashgval.1 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
2 |
|
hashkf.2 |
⊢ 𝐾 = ( 𝐺 ∘ card ) |
3 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) Fn ω |
4 |
1
|
fneq1i |
⊢ ( 𝐺 Fn ω ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) Fn ω ) |
5 |
3 4
|
mpbir |
⊢ 𝐺 Fn ω |
6 |
|
fnfun |
⊢ ( 𝐺 Fn ω → Fun 𝐺 ) |
7 |
5 6
|
ax-mp |
⊢ Fun 𝐺 |
8 |
|
cardf2 |
⊢ card : { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥 ≈ 𝑦 } ⟶ On |
9 |
|
ffun |
⊢ ( card : { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥 ≈ 𝑦 } ⟶ On → Fun card ) |
10 |
8 9
|
ax-mp |
⊢ Fun card |
11 |
|
funco |
⊢ ( ( Fun 𝐺 ∧ Fun card ) → Fun ( 𝐺 ∘ card ) ) |
12 |
7 10 11
|
mp2an |
⊢ Fun ( 𝐺 ∘ card ) |
13 |
|
dmco |
⊢ dom ( 𝐺 ∘ card ) = ( ◡ card “ dom 𝐺 ) |
14 |
5
|
fndmi |
⊢ dom 𝐺 = ω |
15 |
14
|
imaeq2i |
⊢ ( ◡ card “ dom 𝐺 ) = ( ◡ card “ ω ) |
16 |
|
funfn |
⊢ ( Fun card ↔ card Fn dom card ) |
17 |
10 16
|
mpbi |
⊢ card Fn dom card |
18 |
|
elpreima |
⊢ ( card Fn dom card → ( 𝑦 ∈ ( ◡ card “ ω ) ↔ ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( 𝑦 ∈ ( ◡ card “ ω ) ↔ ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) ) |
20 |
|
id |
⊢ ( ( card ‘ 𝑦 ) ∈ ω → ( card ‘ 𝑦 ) ∈ ω ) |
21 |
|
cardid2 |
⊢ ( 𝑦 ∈ dom card → ( card ‘ 𝑦 ) ≈ 𝑦 ) |
22 |
21
|
ensymd |
⊢ ( 𝑦 ∈ dom card → 𝑦 ≈ ( card ‘ 𝑦 ) ) |
23 |
|
breq2 |
⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( 𝑦 ≈ 𝑥 ↔ 𝑦 ≈ ( card ‘ 𝑦 ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( ( card ‘ 𝑦 ) ∈ ω ∧ 𝑦 ≈ ( card ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ω 𝑦 ≈ 𝑥 ) |
25 |
20 22 24
|
syl2anr |
⊢ ( ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) → ∃ 𝑥 ∈ ω 𝑦 ≈ 𝑥 ) |
26 |
|
isfi |
⊢ ( 𝑦 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝑦 ≈ 𝑥 ) |
27 |
25 26
|
sylibr |
⊢ ( ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ∈ Fin ) |
28 |
|
finnum |
⊢ ( 𝑦 ∈ Fin → 𝑦 ∈ dom card ) |
29 |
|
ficardom |
⊢ ( 𝑦 ∈ Fin → ( card ‘ 𝑦 ) ∈ ω ) |
30 |
28 29
|
jca |
⊢ ( 𝑦 ∈ Fin → ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) ) |
31 |
27 30
|
impbii |
⊢ ( ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) ↔ 𝑦 ∈ Fin ) |
32 |
19 31
|
bitri |
⊢ ( 𝑦 ∈ ( ◡ card “ ω ) ↔ 𝑦 ∈ Fin ) |
33 |
32
|
eqriv |
⊢ ( ◡ card “ ω ) = Fin |
34 |
13 15 33
|
3eqtri |
⊢ dom ( 𝐺 ∘ card ) = Fin |
35 |
|
df-fn |
⊢ ( ( 𝐺 ∘ card ) Fn Fin ↔ ( Fun ( 𝐺 ∘ card ) ∧ dom ( 𝐺 ∘ card ) = Fin ) ) |
36 |
12 34 35
|
mpbir2an |
⊢ ( 𝐺 ∘ card ) Fn Fin |
37 |
2
|
fneq1i |
⊢ ( 𝐾 Fn Fin ↔ ( 𝐺 ∘ card ) Fn Fin ) |
38 |
36 37
|
mpbir |
⊢ 𝐾 Fn Fin |
39 |
2
|
fveq1i |
⊢ ( 𝐾 ‘ 𝑦 ) = ( ( 𝐺 ∘ card ) ‘ 𝑦 ) |
40 |
|
fvco |
⊢ ( ( Fun card ∧ 𝑦 ∈ dom card ) → ( ( 𝐺 ∘ card ) ‘ 𝑦 ) = ( 𝐺 ‘ ( card ‘ 𝑦 ) ) ) |
41 |
10 28 40
|
sylancr |
⊢ ( 𝑦 ∈ Fin → ( ( 𝐺 ∘ card ) ‘ 𝑦 ) = ( 𝐺 ‘ ( card ‘ 𝑦 ) ) ) |
42 |
39 41
|
eqtrid |
⊢ ( 𝑦 ∈ Fin → ( 𝐾 ‘ 𝑦 ) = ( 𝐺 ‘ ( card ‘ 𝑦 ) ) ) |
43 |
1
|
hashgf1o |
⊢ 𝐺 : ω –1-1-onto→ ℕ0 |
44 |
|
f1of |
⊢ ( 𝐺 : ω –1-1-onto→ ℕ0 → 𝐺 : ω ⟶ ℕ0 ) |
45 |
43 44
|
ax-mp |
⊢ 𝐺 : ω ⟶ ℕ0 |
46 |
45
|
ffvelrni |
⊢ ( ( card ‘ 𝑦 ) ∈ ω → ( 𝐺 ‘ ( card ‘ 𝑦 ) ) ∈ ℕ0 ) |
47 |
29 46
|
syl |
⊢ ( 𝑦 ∈ Fin → ( 𝐺 ‘ ( card ‘ 𝑦 ) ) ∈ ℕ0 ) |
48 |
42 47
|
eqeltrd |
⊢ ( 𝑦 ∈ Fin → ( 𝐾 ‘ 𝑦 ) ∈ ℕ0 ) |
49 |
48
|
rgen |
⊢ ∀ 𝑦 ∈ Fin ( 𝐾 ‘ 𝑦 ) ∈ ℕ0 |
50 |
|
ffnfv |
⊢ ( 𝐾 : Fin ⟶ ℕ0 ↔ ( 𝐾 Fn Fin ∧ ∀ 𝑦 ∈ Fin ( 𝐾 ‘ 𝑦 ) ∈ ℕ0 ) ) |
51 |
38 49 50
|
mpbir2an |
⊢ 𝐾 : Fin ⟶ ℕ0 |