Metamath Proof Explorer


Theorem hashkf

Description: The finite part of the size function maps all finite sets to their cardinality, as members of NN0 . (Contributed by Mario Carneiro, 13-Sep-2013) (Revised by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypotheses hashgval.1 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω )
hashkf.2 𝐾 = ( 𝐺 ∘ card )
Assertion hashkf 𝐾 : Fin ⟶ ℕ0

Proof

Step Hyp Ref Expression
1 hashgval.1 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω )
2 hashkf.2 𝐾 = ( 𝐺 ∘ card )
3 frfnom ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) Fn ω
4 1 fneq1i ( 𝐺 Fn ω ↔ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) Fn ω )
5 3 4 mpbir 𝐺 Fn ω
6 fnfun ( 𝐺 Fn ω → Fun 𝐺 )
7 5 6 ax-mp Fun 𝐺
8 cardf2 card : { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥𝑦 } ⟶ On
9 ffun ( card : { 𝑦 ∣ ∃ 𝑥 ∈ On 𝑥𝑦 } ⟶ On → Fun card )
10 8 9 ax-mp Fun card
11 funco ( ( Fun 𝐺 ∧ Fun card ) → Fun ( 𝐺 ∘ card ) )
12 7 10 11 mp2an Fun ( 𝐺 ∘ card )
13 dmco dom ( 𝐺 ∘ card ) = ( card “ dom 𝐺 )
14 5 fndmi dom 𝐺 = ω
15 14 imaeq2i ( card “ dom 𝐺 ) = ( card “ ω )
16 funfn ( Fun card ↔ card Fn dom card )
17 10 16 mpbi card Fn dom card
18 elpreima ( card Fn dom card → ( 𝑦 ∈ ( card “ ω ) ↔ ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) ) )
19 17 18 ax-mp ( 𝑦 ∈ ( card “ ω ) ↔ ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) )
20 id ( ( card ‘ 𝑦 ) ∈ ω → ( card ‘ 𝑦 ) ∈ ω )
21 cardid2 ( 𝑦 ∈ dom card → ( card ‘ 𝑦 ) ≈ 𝑦 )
22 21 ensymd ( 𝑦 ∈ dom card → 𝑦 ≈ ( card ‘ 𝑦 ) )
23 breq2 ( 𝑥 = ( card ‘ 𝑦 ) → ( 𝑦𝑥𝑦 ≈ ( card ‘ 𝑦 ) ) )
24 23 rspcev ( ( ( card ‘ 𝑦 ) ∈ ω ∧ 𝑦 ≈ ( card ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ω 𝑦𝑥 )
25 20 22 24 syl2anr ( ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) → ∃ 𝑥 ∈ ω 𝑦𝑥 )
26 isfi ( 𝑦 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝑦𝑥 )
27 25 26 sylibr ( ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ∈ Fin )
28 finnum ( 𝑦 ∈ Fin → 𝑦 ∈ dom card )
29 ficardom ( 𝑦 ∈ Fin → ( card ‘ 𝑦 ) ∈ ω )
30 28 29 jca ( 𝑦 ∈ Fin → ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) )
31 27 30 impbii ( ( 𝑦 ∈ dom card ∧ ( card ‘ 𝑦 ) ∈ ω ) ↔ 𝑦 ∈ Fin )
32 19 31 bitri ( 𝑦 ∈ ( card “ ω ) ↔ 𝑦 ∈ Fin )
33 32 eqriv ( card “ ω ) = Fin
34 13 15 33 3eqtri dom ( 𝐺 ∘ card ) = Fin
35 df-fn ( ( 𝐺 ∘ card ) Fn Fin ↔ ( Fun ( 𝐺 ∘ card ) ∧ dom ( 𝐺 ∘ card ) = Fin ) )
36 12 34 35 mpbir2an ( 𝐺 ∘ card ) Fn Fin
37 2 fneq1i ( 𝐾 Fn Fin ↔ ( 𝐺 ∘ card ) Fn Fin )
38 36 37 mpbir 𝐾 Fn Fin
39 2 fveq1i ( 𝐾𝑦 ) = ( ( 𝐺 ∘ card ) ‘ 𝑦 )
40 fvco ( ( Fun card ∧ 𝑦 ∈ dom card ) → ( ( 𝐺 ∘ card ) ‘ 𝑦 ) = ( 𝐺 ‘ ( card ‘ 𝑦 ) ) )
41 10 28 40 sylancr ( 𝑦 ∈ Fin → ( ( 𝐺 ∘ card ) ‘ 𝑦 ) = ( 𝐺 ‘ ( card ‘ 𝑦 ) ) )
42 39 41 eqtrid ( 𝑦 ∈ Fin → ( 𝐾𝑦 ) = ( 𝐺 ‘ ( card ‘ 𝑦 ) ) )
43 1 hashgf1o 𝐺 : ω –1-1-onto→ ℕ0
44 f1of ( 𝐺 : ω –1-1-onto→ ℕ0𝐺 : ω ⟶ ℕ0 )
45 43 44 ax-mp 𝐺 : ω ⟶ ℕ0
46 45 ffvelrni ( ( card ‘ 𝑦 ) ∈ ω → ( 𝐺 ‘ ( card ‘ 𝑦 ) ) ∈ ℕ0 )
47 29 46 syl ( 𝑦 ∈ Fin → ( 𝐺 ‘ ( card ‘ 𝑦 ) ) ∈ ℕ0 )
48 42 47 eqeltrd ( 𝑦 ∈ Fin → ( 𝐾𝑦 ) ∈ ℕ0 )
49 48 rgen 𝑦 ∈ Fin ( 𝐾𝑦 ) ∈ ℕ0
50 ffnfv ( 𝐾 : Fin ⟶ ℕ0 ↔ ( 𝐾 Fn Fin ∧ ∀ 𝑦 ∈ Fin ( 𝐾𝑦 ) ∈ ℕ0 ) )
51 38 49 50 mpbir2an 𝐾 : Fin ⟶ ℕ0