Metamath Proof Explorer


Theorem hashle00

Description: If the size of a set is less than or equal to zero, the set must be empty. (Contributed by Alexander van der Vekens, 6-Jan-2018) (Proof shortened by AV, 24-Oct-2021)

Ref Expression
Assertion hashle00 ( 𝑉𝑊 → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ 𝑉 = ∅ ) )

Proof

Step Hyp Ref Expression
1 hashge0 ( 𝑉𝑊 → 0 ≤ ( ♯ ‘ 𝑉 ) )
2 1 biantrud ( 𝑉𝑊 → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ ( ( ♯ ‘ 𝑉 ) ≤ 0 ∧ 0 ≤ ( ♯ ‘ 𝑉 ) ) ) )
3 hashxrcl ( 𝑉𝑊 → ( ♯ ‘ 𝑉 ) ∈ ℝ* )
4 0xr 0 ∈ ℝ*
5 xrletri3 ( ( ( ♯ ‘ 𝑉 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( ♯ ‘ 𝑉 ) = 0 ↔ ( ( ♯ ‘ 𝑉 ) ≤ 0 ∧ 0 ≤ ( ♯ ‘ 𝑉 ) ) ) )
6 3 4 5 sylancl ( 𝑉𝑊 → ( ( ♯ ‘ 𝑉 ) = 0 ↔ ( ( ♯ ‘ 𝑉 ) ≤ 0 ∧ 0 ≤ ( ♯ ‘ 𝑉 ) ) ) )
7 hasheq0 ( 𝑉𝑊 → ( ( ♯ ‘ 𝑉 ) = 0 ↔ 𝑉 = ∅ ) )
8 2 6 7 3bitr2d ( 𝑉𝑊 → ( ( ♯ ‘ 𝑉 ) ≤ 0 ↔ 𝑉 = ∅ ) )