| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ↑m  𝑥 )  =  ( 𝐴  ↑m  ∅ ) ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ♯ ‘ ( 𝐴  ↑m  ∅ ) ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑥  =  ∅  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) | 
						
							| 5 | 2 4 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) )  ↔  ( ♯ ‘ ( 𝐴  ↑m  ∅ ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) )  ↔  ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  ∅ ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) ) ) | 
						
							| 7 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ↑m  𝑥 )  =  ( 𝐴  ↑m  𝑦 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 11 | 8 10 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) )  ↔  ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) )  ↔  ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝐴  ↑m  𝑥 )  =  ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) ) ) | 
						
							| 17 | 14 16 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) )  ↔  ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) ) ) ) | 
						
							| 18 | 17 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) )  ↔  ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) ) ) ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ↑m  𝑥 )  =  ( 𝐴  ↑m  𝐵 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝑥  =  𝐵  →  ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ♯ ‘ ( 𝐴  ↑m  𝐵 ) ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝑥  =  𝐵  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 23 | 20 22 | eqeq12d | ⊢ ( 𝑥  =  𝐵  →  ( ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) )  ↔  ( ♯ ‘ ( 𝐴  ↑m  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  𝑥 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑥 ) ) )  ↔  ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) ) ) | 
						
							| 25 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 26 | 25 | nn0cnd | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 27 | 26 | exp0d | ⊢ ( 𝐴  ∈  Fin  →  ( ( ♯ ‘ 𝐴 ) ↑ 0 )  =  1 ) | 
						
							| 28 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 29 | 28 | oveq2i | ⊢ ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ 0 ) | 
						
							| 30 | 29 | a1i | ⊢ ( 𝐴  ∈  Fin  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ 0 ) ) | 
						
							| 31 |  | mapdm0 | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  ∅ ) )  =  ( ♯ ‘ { ∅ } ) ) | 
						
							| 33 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 34 |  | hashsng | ⊢ ( ∅  ∈  V  →  ( ♯ ‘ { ∅ } )  =  1 ) | 
						
							| 35 | 33 34 | mp1i | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ { ∅ } )  =  1 ) | 
						
							| 36 | 32 35 | eqtrd | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  ∅ ) )  =  1 ) | 
						
							| 37 | 27 30 36 | 3eqtr4rd | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  ∅ ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ∅ ) ) ) | 
						
							| 38 |  | oveq1 | ⊢ ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) )  →  ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  ·  ( ♯ ‘ 𝐴 ) )  =  ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) )  ·  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 39 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  𝑦  ∈  V ) | 
						
							| 41 |  | vsnex | ⊢ { 𝑧 }  ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  { 𝑧 }  ∈  V ) | 
						
							| 43 |  | elex | ⊢ ( 𝐴  ∈  Fin  →  𝐴  ∈  V ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  𝐴  ∈  V ) | 
						
							| 45 |  | simprr | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ¬  𝑧  ∈  𝑦 ) | 
						
							| 46 |  | disjsn | ⊢ ( ( 𝑦  ∩  { 𝑧 } )  =  ∅  ↔  ¬  𝑧  ∈  𝑦 ) | 
						
							| 47 | 45 46 | sylibr | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( 𝑦  ∩  { 𝑧 } )  =  ∅ ) | 
						
							| 48 |  | mapunen | ⊢ ( ( ( 𝑦  ∈  V  ∧  { 𝑧 }  ∈  V  ∧  𝐴  ∈  V )  ∧  ( 𝑦  ∩  { 𝑧 } )  =  ∅ )  →  ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ≈  ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) ) ) | 
						
							| 49 | 40 42 44 47 48 | syl31anc | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ≈  ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) ) ) | 
						
							| 50 |  | simpl | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  𝐴  ∈  Fin ) | 
						
							| 51 |  | simprl | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  𝑦  ∈  Fin ) | 
						
							| 52 |  | snfi | ⊢ { 𝑧 }  ∈  Fin | 
						
							| 53 |  | unfi | ⊢ ( ( 𝑦  ∈  Fin  ∧  { 𝑧 }  ∈  Fin )  →  ( 𝑦  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 54 | 51 52 53 | sylancl | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( 𝑦  ∪  { 𝑧 } )  ∈  Fin ) | 
						
							| 55 |  | mapfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∪  { 𝑧 } )  ∈  Fin )  →  ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ∈  Fin ) | 
						
							| 56 | 50 54 55 | syl2anc | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ∈  Fin ) | 
						
							| 57 |  | mapfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑦  ∈  Fin )  →  ( 𝐴  ↑m  𝑦 )  ∈  Fin ) | 
						
							| 58 | 57 | adantrr | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( 𝐴  ↑m  𝑦 )  ∈  Fin ) | 
						
							| 59 |  | mapfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑧 }  ∈  Fin )  →  ( 𝐴  ↑m  { 𝑧 } )  ∈  Fin ) | 
						
							| 60 | 50 52 59 | sylancl | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( 𝐴  ↑m  { 𝑧 } )  ∈  Fin ) | 
						
							| 61 |  | xpfi | ⊢ ( ( ( 𝐴  ↑m  𝑦 )  ∈  Fin  ∧  ( 𝐴  ↑m  { 𝑧 } )  ∈  Fin )  →  ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) )  ∈  Fin ) | 
						
							| 62 | 58 60 61 | syl2anc | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) )  ∈  Fin ) | 
						
							| 63 |  | hashen | ⊢ ( ( ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ∈  Fin  ∧  ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) )  ∈  Fin )  →  ( ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ♯ ‘ ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) ) )  ↔  ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ≈  ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) ) ) ) | 
						
							| 64 | 56 62 63 | syl2anc | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ♯ ‘ ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) ) )  ↔  ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) )  ≈  ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) ) ) ) | 
						
							| 65 | 49 64 | mpbird | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ♯ ‘ ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) ) ) ) | 
						
							| 66 |  | hashxp | ⊢ ( ( ( 𝐴  ↑m  𝑦 )  ∈  Fin  ∧  ( 𝐴  ↑m  { 𝑧 } )  ∈  Fin )  →  ( ♯ ‘ ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) ) )  =  ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  ·  ( ♯ ‘ ( 𝐴  ↑m  { 𝑧 } ) ) ) ) | 
						
							| 67 | 58 60 66 | syl2anc | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ♯ ‘ ( ( 𝐴  ↑m  𝑦 )  ×  ( 𝐴  ↑m  { 𝑧 } ) ) )  =  ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  ·  ( ♯ ‘ ( 𝐴  ↑m  { 𝑧 } ) ) ) ) | 
						
							| 68 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 69 | 68 | a1i | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  𝑧  ∈  V ) | 
						
							| 70 | 50 69 | mapsnend | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( 𝐴  ↑m  { 𝑧 } )  ≈  𝐴 ) | 
						
							| 71 |  | hashen | ⊢ ( ( ( 𝐴  ↑m  { 𝑧 } )  ∈  Fin  ∧  𝐴  ∈  Fin )  →  ( ( ♯ ‘ ( 𝐴  ↑m  { 𝑧 } ) )  =  ( ♯ ‘ 𝐴 )  ↔  ( 𝐴  ↑m  { 𝑧 } )  ≈  𝐴 ) ) | 
						
							| 72 | 60 50 71 | syl2anc | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( ♯ ‘ ( 𝐴  ↑m  { 𝑧 } ) )  =  ( ♯ ‘ 𝐴 )  ↔  ( 𝐴  ↑m  { 𝑧 } )  ≈  𝐴 ) ) | 
						
							| 73 | 70 72 | mpbird | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ♯ ‘ ( 𝐴  ↑m  { 𝑧 } ) )  =  ( ♯ ‘ 𝐴 ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  ·  ( ♯ ‘ ( 𝐴  ↑m  { 𝑧 } ) ) )  =  ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  ·  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 75 | 65 67 74 | 3eqtrd | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  ·  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 76 |  | hashunsng | ⊢ ( 𝑧  ∈  V  →  ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 77 | 76 | elv | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ 𝑦 )  +  1 ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) )  =  ( ( ♯ ‘ 𝑦 )  +  1 ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ( ♯ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 80 | 26 | adantr | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 81 |  | hashcl | ⊢ ( 𝑦  ∈  Fin  →  ( ♯ ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 82 | 81 | ad2antrl | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ♯ ‘ 𝑦 )  ∈  ℕ0 ) | 
						
							| 83 | 80 82 | expp1d | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ( ♯ ‘ 𝑦 )  +  1 ) )  =  ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) )  ·  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 84 | 79 83 | eqtrd | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) )  ·  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 85 | 75 84 | eqeq12d | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) )  ↔  ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  ·  ( ♯ ‘ 𝐴 ) )  =  ( ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) )  ·  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 86 | 38 85 | imbitrrid | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 ) )  →  ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) )  →  ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) ) ) ) | 
						
							| 87 | 86 | expcom | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( 𝐴  ∈  Fin  →  ( ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) )  →  ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) ) ) ) ) | 
						
							| 88 | 87 | a2d | ⊢ ( ( 𝑦  ∈  Fin  ∧  ¬  𝑧  ∈  𝑦 )  →  ( ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  𝑦 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑦 ) ) )  →  ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  ( 𝑦  ∪  { 𝑧 } ) ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ ( 𝑦  ∪  { 𝑧 } ) ) ) ) ) ) | 
						
							| 89 | 6 12 18 24 37 88 | findcard2s | ⊢ ( 𝐵  ∈  Fin  →  ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ↑m  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 90 | 89 | impcom | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ ( 𝐴  ↑m  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 ) ↑ ( ♯ ‘ 𝐵 ) ) ) |