Metamath Proof Explorer


Theorem hashnbusgrnn0

Description: The number of neighbors of a vertex in a finite simple graph is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Jul-2018) (Revised by AV, 15-Dec-2020)

Ref Expression
Hypothesis hashnbusgrnn0.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion hashnbusgrnn0 ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 hashnbusgrnn0.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 eleq2i ( 𝑈𝑉𝑈 ∈ ( Vtx ‘ 𝐺 ) )
3 nbfiusgrfi ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin )
4 2 3 sylan2b ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈𝑉 ) → ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin )
5 hashcl ( ( 𝐺 NeighbVtx 𝑈 ) ∈ Fin → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ∈ ℕ0 )
6 4 5 syl ( ( 𝐺 ∈ FinUSGraph ∧ 𝑈𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑈 ) ) ∈ ℕ0 )