| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnn0pnf |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) ) |
| 2 |
|
mnfnre |
⊢ -∞ ∉ ℝ |
| 3 |
|
df-nel |
⊢ ( -∞ ∉ ℝ ↔ ¬ -∞ ∈ ℝ ) |
| 4 |
|
nn0re |
⊢ ( -∞ ∈ ℕ0 → -∞ ∈ ℝ ) |
| 5 |
4
|
con3i |
⊢ ( ¬ -∞ ∈ ℝ → ¬ -∞ ∈ ℕ0 ) |
| 6 |
3 5
|
sylbi |
⊢ ( -∞ ∉ ℝ → ¬ -∞ ∈ ℕ0 ) |
| 7 |
2 6
|
ax-mp |
⊢ ¬ -∞ ∈ ℕ0 |
| 8 |
|
eleq1 |
⊢ ( ( ♯ ‘ 𝐴 ) = -∞ → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ -∞ ∈ ℕ0 ) ) |
| 9 |
7 8
|
mtbiri |
⊢ ( ( ♯ ‘ 𝐴 ) = -∞ → ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 10 |
9
|
necon2ai |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ≠ -∞ ) |
| 11 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
| 12 |
|
neeq1 |
⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( ♯ ‘ 𝐴 ) ≠ -∞ ↔ +∞ ≠ -∞ ) ) |
| 13 |
11 12
|
mpbiri |
⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ♯ ‘ 𝐴 ) ≠ -∞ ) |
| 14 |
10 13
|
jaoi |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) → ( ♯ ‘ 𝐴 ) ≠ -∞ ) |
| 15 |
1 14
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ≠ -∞ ) |