Step |
Hyp |
Ref |
Expression |
1 |
|
ne0i |
⊢ ( 𝑁 ∈ 𝑉 → 𝑉 ≠ ∅ ) |
2 |
|
hashge1 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑉 ≠ ∅ ) → 1 ≤ ( ♯ ‘ 𝑉 ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ) → 1 ≤ ( ♯ ‘ 𝑉 ) ) |
4 |
|
simpr |
⊢ ( ( 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
5 |
|
0lt1 |
⊢ 0 < 1 |
6 |
|
0re |
⊢ 0 ∈ ℝ |
7 |
|
1re |
⊢ 1 ∈ ℝ |
8 |
6 7
|
ltnlei |
⊢ ( 0 < 1 ↔ ¬ 1 ≤ 0 ) |
9 |
5 8
|
mpbi |
⊢ ¬ 1 ≤ 0 |
10 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ( 1 ≤ ( ♯ ‘ 𝑉 ) ↔ 1 ≤ 0 ) ) |
11 |
9 10
|
mtbiri |
⊢ ( ( ♯ ‘ 𝑉 ) = 0 → ¬ 1 ≤ ( ♯ ‘ 𝑉 ) ) |
12 |
11
|
necon2ai |
⊢ ( 1 ≤ ( ♯ ‘ 𝑉 ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) |
13 |
12
|
adantr |
⊢ ( ( 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ≠ 0 ) |
14 |
|
elnnne0 |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑉 ) ≠ 0 ) ) |
15 |
4 13 14
|
sylanbrc |
⊢ ( ( 1 ≤ ( ♯ ‘ 𝑉 ) ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ ) |
16 |
15
|
ex |
⊢ ( 1 ≤ ( ♯ ‘ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
17 |
3 16
|
syl |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝑁 ∈ 𝑉 ) → ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
18 |
17
|
impancom |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( 𝑁 ∈ 𝑉 → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
19 |
18
|
com12 |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ) |
20 |
|
eleq1 |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ↔ 𝑌 ∈ ℕ0 ) ) |
21 |
20
|
anbi2d |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) ↔ ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) ) ) |
22 |
|
eleq1 |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( ( ♯ ‘ 𝑉 ) ∈ ℕ ↔ 𝑌 ∈ ℕ ) ) |
23 |
21 22
|
imbi12d |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( ( ( 𝑉 ∈ 𝑊 ∧ ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) → ( ♯ ‘ 𝑉 ) ∈ ℕ ) ↔ ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) → 𝑌 ∈ ℕ ) ) ) |
24 |
19 23
|
syl5ib |
⊢ ( ( ♯ ‘ 𝑉 ) = 𝑌 → ( 𝑁 ∈ 𝑉 → ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) → 𝑌 ∈ ℕ ) ) ) |
25 |
24
|
imp |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 𝑌 ∧ 𝑁 ∈ 𝑉 ) → ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) → 𝑌 ∈ ℕ ) ) |
26 |
25
|
impcom |
⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝑌 ∈ ℕ0 ) ∧ ( ( ♯ ‘ 𝑉 ) = 𝑌 ∧ 𝑁 ∈ 𝑉 ) ) → 𝑌 ∈ ℕ ) |