| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ne0i | ⊢ ( 𝑁  ∈  𝑉  →  𝑉  ≠  ∅ ) | 
						
							| 2 |  | hashge1 | ⊢ ( ( 𝑉  ∈  𝑊  ∧  𝑉  ≠  ∅ )  →  1  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑉  ∈  𝑊  ∧  𝑁  ∈  𝑉 )  →  1  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 1  ≤  ( ♯ ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ℕ0 )  →  ( ♯ ‘ 𝑉 )  ∈  ℕ0 ) | 
						
							| 5 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 6 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 7 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 8 | 6 7 | ltnlei | ⊢ ( 0  <  1  ↔  ¬  1  ≤  0 ) | 
						
							| 9 | 5 8 | mpbi | ⊢ ¬  1  ≤  0 | 
						
							| 10 |  | breq2 | ⊢ ( ( ♯ ‘ 𝑉 )  =  0  →  ( 1  ≤  ( ♯ ‘ 𝑉 )  ↔  1  ≤  0 ) ) | 
						
							| 11 | 9 10 | mtbiri | ⊢ ( ( ♯ ‘ 𝑉 )  =  0  →  ¬  1  ≤  ( ♯ ‘ 𝑉 ) ) | 
						
							| 12 | 11 | necon2ai | ⊢ ( 1  ≤  ( ♯ ‘ 𝑉 )  →  ( ♯ ‘ 𝑉 )  ≠  0 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 1  ≤  ( ♯ ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ℕ0 )  →  ( ♯ ‘ 𝑉 )  ≠  0 ) | 
						
							| 14 |  | elnnne0 | ⊢ ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑉 )  ≠  0 ) ) | 
						
							| 15 | 4 13 14 | sylanbrc | ⊢ ( ( 1  ≤  ( ♯ ‘ 𝑉 )  ∧  ( ♯ ‘ 𝑉 )  ∈  ℕ0 )  →  ( ♯ ‘ 𝑉 )  ∈  ℕ ) | 
						
							| 16 | 15 | ex | ⊢ ( 1  ≤  ( ♯ ‘ 𝑉 )  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ♯ ‘ 𝑉 )  ∈  ℕ ) ) | 
						
							| 17 | 3 16 | syl | ⊢ ( ( 𝑉  ∈  𝑊  ∧  𝑁  ∈  𝑉 )  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  →  ( ♯ ‘ 𝑉 )  ∈  ℕ ) ) | 
						
							| 18 | 17 | impancom | ⊢ ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  ∈  ℕ0 )  →  ( 𝑁  ∈  𝑉  →  ( ♯ ‘ 𝑉 )  ∈  ℕ ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( 𝑁  ∈  𝑉  →  ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  ∈  ℕ0 )  →  ( ♯ ‘ 𝑉 )  ∈  ℕ ) ) | 
						
							| 20 |  | eleq1 | ⊢ ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ0  ↔  𝑌  ∈  ℕ0 ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  ∈  ℕ0 )  ↔  ( 𝑉  ∈  𝑊  ∧  𝑌  ∈  ℕ0 ) ) ) | 
						
							| 22 |  | eleq1 | ⊢ ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( ( ♯ ‘ 𝑉 )  ∈  ℕ  ↔  𝑌  ∈  ℕ ) ) | 
						
							| 23 | 21 22 | imbi12d | ⊢ ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( ( ( 𝑉  ∈  𝑊  ∧  ( ♯ ‘ 𝑉 )  ∈  ℕ0 )  →  ( ♯ ‘ 𝑉 )  ∈  ℕ )  ↔  ( ( 𝑉  ∈  𝑊  ∧  𝑌  ∈  ℕ0 )  →  𝑌  ∈  ℕ ) ) ) | 
						
							| 24 | 19 23 | imbitrid | ⊢ ( ( ♯ ‘ 𝑉 )  =  𝑌  →  ( 𝑁  ∈  𝑉  →  ( ( 𝑉  ∈  𝑊  ∧  𝑌  ∈  ℕ0 )  →  𝑌  ∈  ℕ ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( ( ♯ ‘ 𝑉 )  =  𝑌  ∧  𝑁  ∈  𝑉 )  →  ( ( 𝑉  ∈  𝑊  ∧  𝑌  ∈  ℕ0 )  →  𝑌  ∈  ℕ ) ) | 
						
							| 26 | 25 | impcom | ⊢ ( ( ( 𝑉  ∈  𝑊  ∧  𝑌  ∈  ℕ0 )  ∧  ( ( ♯ ‘ 𝑉 )  =  𝑌  ∧  𝑁  ∈  𝑉 ) )  →  𝑌  ∈  ℕ ) |