Step |
Hyp |
Ref |
Expression |
1 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
2 |
1
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) ) |
3 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
4 |
2 3
|
ffvelrnd |
⊢ ( 𝑀 ∈ 𝑉 → ( ♯ ‘ 𝑀 ) ∈ ( ℕ0 ∪ { +∞ } ) ) |
5 |
|
elun |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) ∈ { +∞ } ) ) |
6 |
|
elsni |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ { +∞ } → ( ♯ ‘ 𝑀 ) = +∞ ) |
7 |
6
|
orim2i |
⊢ ( ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) ∈ { +∞ } ) → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
8 |
5 7
|
sylbi |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ( ℕ0 ∪ { +∞ } ) → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
9 |
4 8
|
syl |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |