| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
| 2 |
1
|
a1i |
⊢ ( 𝑀 ∈ 𝑉 → ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 3 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
| 4 |
2 3
|
ffvelcdmd |
⊢ ( 𝑀 ∈ 𝑉 → ( ♯ ‘ 𝑀 ) ∈ ( ℕ0 ∪ { +∞ } ) ) |
| 5 |
|
elun |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) ∈ { +∞ } ) ) |
| 6 |
|
elsni |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ { +∞ } → ( ♯ ‘ 𝑀 ) = +∞ ) |
| 7 |
6
|
orim2i |
⊢ ( ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) ∈ { +∞ } ) → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
| 8 |
5 7
|
sylbi |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ( ℕ0 ∪ { +∞ } ) → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
| 9 |
4 8
|
syl |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |