| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnne0 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ♯ ‘ 𝐴 ) ≠ 0 ) |
| 2 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 3 |
|
elnn0 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) |
| 4 |
2 3
|
sylib |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∨ ( ♯ ‘ 𝐴 ) = 0 ) ) |
| 5 |
4
|
ord |
⊢ ( 𝐴 ∈ Fin → ( ¬ ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ♯ ‘ 𝐴 ) = 0 ) ) |
| 6 |
5
|
necon1ad |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ≠ 0 → ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
| 7 |
1 6
|
impbid2 |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
| 8 |
|
hasheq0 |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
| 9 |
8
|
necon3bid |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ ∅ ) ) |
| 10 |
7 9
|
bitrd |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) |