Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
⊢ ( ( ♯ ‘ 𝑀 ) ∉ ℕ0 ↔ ¬ ( ♯ ‘ 𝑀 ) ∈ ℕ0 ) |
2 |
|
pm2.21 |
⊢ ( ¬ ( ♯ ‘ 𝑀 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 → 𝑁 ≤ ( ♯ ‘ 𝑀 ) ) ) |
3 |
1 2
|
sylbi |
⊢ ( ( ♯ ‘ 𝑀 ) ∉ ℕ0 → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 → 𝑁 ≤ ( ♯ ‘ 𝑀 ) ) ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ♯ ‘ 𝑀 ) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 → 𝑁 ≤ ( ♯ ‘ 𝑀 ) ) ) |
5 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
6 |
5
|
ltpnfd |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 < +∞ ) |
7 |
5
|
rexrd |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ* ) |
8 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
9 |
|
xrltle |
⊢ ( ( 𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑁 < +∞ → 𝑁 ≤ +∞ ) ) |
10 |
7 8 9
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 < +∞ → 𝑁 ≤ +∞ ) ) |
11 |
6 10
|
mpd |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ≤ +∞ ) |
12 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑀 ) = +∞ → ( 𝑁 ≤ ( ♯ ‘ 𝑀 ) ↔ 𝑁 ≤ +∞ ) ) |
13 |
11 12
|
syl5ibrcom |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑀 ) = +∞ → 𝑁 ≤ ( ♯ ‘ 𝑀 ) ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ♯ ‘ 𝑀 ) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑀 ) = +∞ → 𝑁 ≤ ( ♯ ‘ 𝑀 ) ) ) |
15 |
|
hashnn0pnf |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ♯ ‘ 𝑀 ) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
17 |
4 14 16
|
mpjaod |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( ♯ ‘ 𝑀 ) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( ♯ ‘ 𝑀 ) ) |