| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnzfz2.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 2 |
|
hashnzfz2.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 3 |
|
2nn |
⊢ 2 ∈ ℕ |
| 4 |
|
uznnssnn |
⊢ ( 2 ∈ ℕ → ( ℤ≥ ‘ 2 ) ⊆ ℕ ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ℤ≥ ‘ 2 ) ⊆ ℕ |
| 6 |
5 1
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 7 |
|
2z |
⊢ 2 ∈ ℤ |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 9 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 10 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 11 |
10
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 2 − 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 12 |
9 11
|
eqtr4i |
⊢ ℕ = ( ℤ≥ ‘ ( 2 − 1 ) ) |
| 13 |
2 12
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) |
| 14 |
6 8 13
|
hashnzfz |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ∥ “ { 𝑁 } ) ∩ ( 2 ... 𝐾 ) ) ) = ( ( ⌊ ‘ ( 𝐾 / 𝑁 ) ) − ( ⌊ ‘ ( ( 2 − 1 ) / 𝑁 ) ) ) ) |
| 15 |
10
|
oveq1i |
⊢ ( ( 2 − 1 ) / 𝑁 ) = ( 1 / 𝑁 ) |
| 16 |
15
|
fveq2i |
⊢ ( ⌊ ‘ ( ( 2 − 1 ) / 𝑁 ) ) = ( ⌊ ‘ ( 1 / 𝑁 ) ) |
| 17 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 18 |
6
|
nnrecred |
⊢ ( 𝜑 → ( 1 / 𝑁 ) ∈ ℝ ) |
| 19 |
6
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 20 |
6
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 21 |
19 20
|
recgt0d |
⊢ ( 𝜑 → 0 < ( 1 / 𝑁 ) ) |
| 22 |
17 18 21
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( 1 / 𝑁 ) ) |
| 23 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑁 ) |
| 24 |
1 23
|
syl |
⊢ ( 𝜑 → 2 ≤ 𝑁 ) |
| 25 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 26 |
|
zlem1lt |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 2 ≤ 𝑁 ↔ ( 2 − 1 ) < 𝑁 ) ) |
| 27 |
7 25 26
|
sylancr |
⊢ ( 𝜑 → ( 2 ≤ 𝑁 ↔ ( 2 − 1 ) < 𝑁 ) ) |
| 28 |
24 27
|
mpbid |
⊢ ( 𝜑 → ( 2 − 1 ) < 𝑁 ) |
| 29 |
10 28
|
eqbrtrrid |
⊢ ( 𝜑 → 1 < 𝑁 ) |
| 30 |
6
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 31 |
30
|
recgt1d |
⊢ ( 𝜑 → ( 1 < 𝑁 ↔ ( 1 / 𝑁 ) < 1 ) ) |
| 32 |
29 31
|
mpbid |
⊢ ( 𝜑 → ( 1 / 𝑁 ) < 1 ) |
| 33 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 34 |
32 33
|
breqtrrdi |
⊢ ( 𝜑 → ( 1 / 𝑁 ) < ( 0 + 1 ) ) |
| 35 |
|
0z |
⊢ 0 ∈ ℤ |
| 36 |
|
flbi |
⊢ ( ( ( 1 / 𝑁 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ ( 1 / 𝑁 ) ) = 0 ↔ ( 0 ≤ ( 1 / 𝑁 ) ∧ ( 1 / 𝑁 ) < ( 0 + 1 ) ) ) ) |
| 37 |
18 35 36
|
sylancl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / 𝑁 ) ) = 0 ↔ ( 0 ≤ ( 1 / 𝑁 ) ∧ ( 1 / 𝑁 ) < ( 0 + 1 ) ) ) ) |
| 38 |
22 34 37
|
mpbir2and |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / 𝑁 ) ) = 0 ) |
| 39 |
16 38
|
eqtrid |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( 2 − 1 ) / 𝑁 ) ) = 0 ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐾 / 𝑁 ) ) − ( ⌊ ‘ ( ( 2 − 1 ) / 𝑁 ) ) ) = ( ( ⌊ ‘ ( 𝐾 / 𝑁 ) ) − 0 ) ) |
| 41 |
2
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 42 |
41 6
|
nndivred |
⊢ ( 𝜑 → ( 𝐾 / 𝑁 ) ∈ ℝ ) |
| 43 |
42
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 / 𝑁 ) ) ∈ ℤ ) |
| 44 |
43
|
zcnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 / 𝑁 ) ) ∈ ℂ ) |
| 45 |
44
|
subid1d |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐾 / 𝑁 ) ) − 0 ) = ( ⌊ ‘ ( 𝐾 / 𝑁 ) ) ) |
| 46 |
14 40 45
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ∥ “ { 𝑁 } ) ∩ ( 2 ... 𝐾 ) ) ) = ( ⌊ ‘ ( 𝐾 / 𝑁 ) ) ) |