Step |
Hyp |
Ref |
Expression |
1 |
|
hashp1i.1 |
⊢ 𝐴 ∈ ω |
2 |
|
hashp1i.2 |
⊢ 𝐵 = suc 𝐴 |
3 |
|
hashp1i.3 |
⊢ ( ♯ ‘ 𝐴 ) = 𝑀 |
4 |
|
hashp1i.4 |
⊢ ( 𝑀 + 1 ) = 𝑁 |
5 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
6 |
2 5
|
eqtri |
⊢ 𝐵 = ( 𝐴 ∪ { 𝐴 } ) |
7 |
6
|
fveq2i |
⊢ ( ♯ ‘ 𝐵 ) = ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) |
8 |
|
nnfi |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |
9 |
1 8
|
ax-mp |
⊢ 𝐴 ∈ Fin |
10 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
11 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
12 |
1 10 11
|
mp2b |
⊢ ¬ 𝐴 ∈ 𝐴 |
13 |
|
hashunsng |
⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |
14 |
1 13
|
ax-mp |
⊢ ( ( 𝐴 ∈ Fin ∧ ¬ 𝐴 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
15 |
9 12 14
|
mp2an |
⊢ ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) |
16 |
3
|
oveq1i |
⊢ ( ( ♯ ‘ 𝐴 ) + 1 ) = ( 𝑀 + 1 ) |
17 |
16 4
|
eqtri |
⊢ ( ( ♯ ‘ 𝐴 ) + 1 ) = 𝑁 |
18 |
15 17
|
eqtri |
⊢ ( ♯ ‘ ( 𝐴 ∪ { 𝐴 } ) ) = 𝑁 |
19 |
7 18
|
eqtri |
⊢ ( ♯ ‘ 𝐵 ) = 𝑁 |