Step |
Hyp |
Ref |
Expression |
1 |
|
hashprg |
⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( 𝑀 ≠ 𝑁 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
2 |
1
|
biimp3a |
⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
3 |
|
elprchashprn2 |
⊢ ( ¬ 𝑀 ∈ V → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
4 |
|
pm2.21 |
⊢ ( ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
5 |
3 4
|
syl |
⊢ ( ¬ 𝑀 ∈ V → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
6 |
|
elprchashprn2 |
⊢ ( ¬ 𝑁 ∈ V → ¬ ( ♯ ‘ { 𝑁 , 𝑀 } ) = 2 ) |
7 |
|
prcom |
⊢ { 𝑁 , 𝑀 } = { 𝑀 , 𝑁 } |
8 |
7
|
fveq2i |
⊢ ( ♯ ‘ { 𝑁 , 𝑀 } ) = ( ♯ ‘ { 𝑀 , 𝑁 } ) |
9 |
8
|
eqeq1i |
⊢ ( ( ♯ ‘ { 𝑁 , 𝑀 } ) = 2 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
10 |
9 4
|
sylnbi |
⊢ ( ¬ ( ♯ ‘ { 𝑁 , 𝑀 } ) = 2 → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
11 |
6 10
|
syl |
⊢ ( ¬ 𝑁 ∈ V → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
12 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → 𝑀 ∈ V ) |
13 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → 𝑁 ∈ V ) |
14 |
1
|
biimpar |
⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → 𝑀 ≠ 𝑁 ) |
15 |
12 13 14
|
3jca |
⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) |
16 |
15
|
ex |
⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
17 |
5 11 16
|
ecase |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) |
18 |
2 17
|
impbii |
⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |