| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashprg |
⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( 𝑀 ≠ 𝑁 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
| 2 |
1
|
biimp3a |
⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 3 |
|
elprchashprn2 |
⊢ ( ¬ 𝑀 ∈ V → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 4 |
|
pm2.21 |
⊢ ( ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
| 5 |
3 4
|
syl |
⊢ ( ¬ 𝑀 ∈ V → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
| 6 |
|
elprchashprn2 |
⊢ ( ¬ 𝑁 ∈ V → ¬ ( ♯ ‘ { 𝑁 , 𝑀 } ) = 2 ) |
| 7 |
|
prcom |
⊢ { 𝑁 , 𝑀 } = { 𝑀 , 𝑁 } |
| 8 |
7
|
fveq2i |
⊢ ( ♯ ‘ { 𝑁 , 𝑀 } ) = ( ♯ ‘ { 𝑀 , 𝑁 } ) |
| 9 |
8
|
eqeq1i |
⊢ ( ( ♯ ‘ { 𝑁 , 𝑀 } ) = 2 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 10 |
9 4
|
sylnbi |
⊢ ( ¬ ( ♯ ‘ { 𝑁 , 𝑀 } ) = 2 → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
| 11 |
6 10
|
syl |
⊢ ( ¬ 𝑁 ∈ V → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
| 12 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → 𝑀 ∈ V ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → 𝑁 ∈ V ) |
| 14 |
1
|
biimpar |
⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → 𝑀 ≠ 𝑁 ) |
| 15 |
12 13 14
|
3jca |
⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) |
| 16 |
15
|
ex |
⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
| 17 |
5 11 16
|
ecase |
⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) |
| 18 |
2 17
|
impbii |
⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |