Step |
Hyp |
Ref |
Expression |
1 |
|
hashprdifel.s |
⊢ 𝑆 = { 𝐴 , 𝐵 } |
2 |
1
|
fveq2i |
⊢ ( ♯ ‘ 𝑆 ) = ( ♯ ‘ { 𝐴 , 𝐵 } ) |
3 |
2
|
eqeq1i |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
4 |
|
hashprb |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
5 |
3 4
|
bitr4i |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) |
6 |
|
prid1g |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
8 |
7 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑆 ) |
9 |
|
prid2g |
⊢ ( 𝐵 ∈ V → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
11 |
10 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑆 ) |
12 |
|
simp3 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
13 |
8 11 12
|
3jca |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) ) |
14 |
5 13
|
sylbi |
⊢ ( ( ♯ ‘ 𝑆 ) = 2 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) ) |