Metamath Proof Explorer


Theorem hashprlei

Description: An unordered pair has at most two elements. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion hashprlei ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 )

Proof

Step Hyp Ref Expression
1 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
2 hashsnlei ( { 𝐴 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 } ) ≤ 1 )
3 hashsnlei ( { 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 } ) ≤ 1 )
4 1nn0 1 ∈ ℕ0
5 1p1e2 ( 1 + 1 ) = 2
6 1 2 3 4 4 5 hashunlei ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 )