Step |
Hyp |
Ref |
Expression |
1 |
|
pweq |
⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) |
2 |
1
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝒫 𝑥 ) = ( ♯ ‘ 𝒫 𝐴 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) |
4 |
3
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 2 ↑ ( ♯ ‘ 𝑥 ) ) = ( 2 ↑ ( ♯ ‘ 𝐴 ) ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝒫 𝑥 ) = ( 2 ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ 𝒫 𝐴 ) = ( 2 ↑ ( ♯ ‘ 𝐴 ) ) ) ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
6
|
pw2en |
⊢ 𝒫 𝑥 ≈ ( 2o ↑m 𝑥 ) |
8 |
|
pwfi |
⊢ ( 𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin ) |
9 |
8
|
biimpi |
⊢ ( 𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin ) |
10 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
11 |
|
prfi |
⊢ { ∅ , { ∅ } } ∈ Fin |
12 |
10 11
|
eqeltri |
⊢ 2o ∈ Fin |
13 |
|
mapfi |
⊢ ( ( 2o ∈ Fin ∧ 𝑥 ∈ Fin ) → ( 2o ↑m 𝑥 ) ∈ Fin ) |
14 |
12 13
|
mpan |
⊢ ( 𝑥 ∈ Fin → ( 2o ↑m 𝑥 ) ∈ Fin ) |
15 |
|
hashen |
⊢ ( ( 𝒫 𝑥 ∈ Fin ∧ ( 2o ↑m 𝑥 ) ∈ Fin ) → ( ( ♯ ‘ 𝒫 𝑥 ) = ( ♯ ‘ ( 2o ↑m 𝑥 ) ) ↔ 𝒫 𝑥 ≈ ( 2o ↑m 𝑥 ) ) ) |
16 |
9 14 15
|
syl2anc |
⊢ ( 𝑥 ∈ Fin → ( ( ♯ ‘ 𝒫 𝑥 ) = ( ♯ ‘ ( 2o ↑m 𝑥 ) ) ↔ 𝒫 𝑥 ≈ ( 2o ↑m 𝑥 ) ) ) |
17 |
7 16
|
mpbiri |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝒫 𝑥 ) = ( ♯ ‘ ( 2o ↑m 𝑥 ) ) ) |
18 |
|
hashmap |
⊢ ( ( 2o ∈ Fin ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 2o ↑m 𝑥 ) ) = ( ( ♯ ‘ 2o ) ↑ ( ♯ ‘ 𝑥 ) ) ) |
19 |
12 18
|
mpan |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ ( 2o ↑m 𝑥 ) ) = ( ( ♯ ‘ 2o ) ↑ ( ♯ ‘ 𝑥 ) ) ) |
20 |
|
hash2 |
⊢ ( ♯ ‘ 2o ) = 2 |
21 |
20
|
oveq1i |
⊢ ( ( ♯ ‘ 2o ) ↑ ( ♯ ‘ 𝑥 ) ) = ( 2 ↑ ( ♯ ‘ 𝑥 ) ) |
22 |
19 21
|
eqtrdi |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ ( 2o ↑m 𝑥 ) ) = ( 2 ↑ ( ♯ ‘ 𝑥 ) ) ) |
23 |
17 22
|
eqtrd |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝒫 𝑥 ) = ( 2 ↑ ( ♯ ‘ 𝑥 ) ) ) |
24 |
5 23
|
vtoclga |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝒫 𝐴 ) = ( 2 ↑ ( ♯ ‘ 𝐴 ) ) ) |