Step |
Hyp |
Ref |
Expression |
1 |
|
hashrabrex.1 |
⊢ ( 𝜑 → 𝑌 ∈ Fin ) |
2 |
|
hashrabrex.2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → { 𝑥 ∈ 𝑋 ∣ 𝜓 } ∈ Fin ) |
3 |
|
hashrabrex.3 |
⊢ ( 𝜑 → Disj 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) |
4 |
|
iunrab |
⊢ ∪ 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } = { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑌 𝜓 } |
5 |
4
|
eqcomi |
⊢ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑌 𝜓 } = ∪ 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } |
6 |
5
|
fveq2i |
⊢ ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑌 𝜓 } ) = ( ♯ ‘ ∪ 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) |
7 |
1 2 3
|
hashiun |
⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑦 ∈ 𝑌 { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) = Σ 𝑦 ∈ 𝑌 ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) ) |
8 |
6 7
|
eqtrid |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑌 𝜓 } ) = Σ 𝑦 ∈ 𝑌 ( ♯ ‘ { 𝑥 ∈ 𝑋 ∣ 𝜓 } ) ) |