| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  { 𝑥  ∈  { 𝐴 }  ∣  𝜑 } | 
						
							| 2 |  | rabrsn | ⊢ ( { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  →  ( { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  ∅  ∨  { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  { 𝐴 } ) ) | 
						
							| 3 |  | fveqeq2 | ⊢ ( { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  ∅  →  ( ( ♯ ‘ { 𝑥  ∈  { 𝐴 }  ∣  𝜑 } )  =  𝑁  ↔  ( ♯ ‘ ∅ )  =  𝑁 ) ) | 
						
							| 4 |  | eqcom | ⊢ ( ( ♯ ‘ ∅ )  =  𝑁  ↔  𝑁  =  ( ♯ ‘ ∅ ) ) | 
						
							| 5 | 4 | biimpi | ⊢ ( ( ♯ ‘ ∅ )  =  𝑁  →  𝑁  =  ( ♯ ‘ ∅ ) ) | 
						
							| 6 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( ( ♯ ‘ ∅ )  =  𝑁  →  𝑁  =  0 ) | 
						
							| 8 | 7 | orcd | ⊢ ( ( ♯ ‘ ∅ )  =  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) | 
						
							| 9 | 3 8 | biimtrdi | ⊢ ( { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  ∅  →  ( ( ♯ ‘ { 𝑥  ∈  { 𝐴 }  ∣  𝜑 } )  =  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 10 |  | fveqeq2 | ⊢ ( { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  { 𝐴 }  →  ( ( ♯ ‘ { 𝑥  ∈  { 𝐴 }  ∣  𝜑 } )  =  𝑁  ↔  ( ♯ ‘ { 𝐴 } )  =  𝑁 ) ) | 
						
							| 11 |  | eqcom | ⊢ ( ( ♯ ‘ { 𝐴 } )  =  𝑁  ↔  𝑁  =  ( ♯ ‘ { 𝐴 } ) ) | 
						
							| 12 | 11 | biimpi | ⊢ ( ( ♯ ‘ { 𝐴 } )  =  𝑁  →  𝑁  =  ( ♯ ‘ { 𝐴 } ) ) | 
						
							| 13 |  | hashsng | ⊢ ( 𝐴  ∈  V  →  ( ♯ ‘ { 𝐴 } )  =  1 ) | 
						
							| 14 | 12 13 | sylan9eqr | ⊢ ( ( 𝐴  ∈  V  ∧  ( ♯ ‘ { 𝐴 } )  =  𝑁 )  →  𝑁  =  1 ) | 
						
							| 15 | 14 | olcd | ⊢ ( ( 𝐴  ∈  V  ∧  ( ♯ ‘ { 𝐴 } )  =  𝑁 )  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝐴  ∈  V  →  ( ( ♯ ‘ { 𝐴 } )  =  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 17 |  | snprc | ⊢ ( ¬  𝐴  ∈  V  ↔  { 𝐴 }  =  ∅ ) | 
						
							| 18 |  | fveqeq2 | ⊢ ( { 𝐴 }  =  ∅  →  ( ( ♯ ‘ { 𝐴 } )  =  𝑁  ↔  ( ♯ ‘ ∅ )  =  𝑁 ) ) | 
						
							| 19 | 18 8 | biimtrdi | ⊢ ( { 𝐴 }  =  ∅  →  ( ( ♯ ‘ { 𝐴 } )  =  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 20 | 17 19 | sylbi | ⊢ ( ¬  𝐴  ∈  V  →  ( ( ♯ ‘ { 𝐴 } )  =  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 21 | 16 20 | pm2.61i | ⊢ ( ( ♯ ‘ { 𝐴 } )  =  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) | 
						
							| 22 | 10 21 | biimtrdi | ⊢ ( { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  { 𝐴 }  →  ( ( ♯ ‘ { 𝑥  ∈  { 𝐴 }  ∣  𝜑 } )  =  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 23 | 9 22 | jaoi | ⊢ ( ( { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  ∅  ∨  { 𝑥  ∈  { 𝐴 }  ∣  𝜑 }  =  { 𝐴 } )  →  ( ( ♯ ‘ { 𝑥  ∈  { 𝐴 }  ∣  𝜑 } )  =  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 24 | 1 2 23 | mp2b | ⊢ ( ( ♯ ‘ { 𝑥  ∈  { 𝐴 }  ∣  𝜑 } )  =  𝑁  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) |