Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } |
2 |
|
rabrsn |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) ) |
3 |
|
fveqeq2 |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 ↔ ( ♯ ‘ ∅ ) = 1 ) ) |
4 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
5 |
4
|
eqeq1i |
⊢ ( ( ♯ ‘ ∅ ) = 1 ↔ 0 = 1 ) |
6 |
|
0ne1 |
⊢ 0 ≠ 1 |
7 |
|
eqneqall |
⊢ ( 0 = 1 → ( 0 ≠ 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
8 |
6 7
|
mpi |
⊢ ( 0 = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |
9 |
5 8
|
sylbi |
⊢ ( ( ♯ ‘ ∅ ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |
10 |
3 9
|
syl6bi |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
11 |
|
snidg |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 } ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → 𝐴 ∈ { 𝐴 } ) |
13 |
|
eleq2 |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ↔ 𝐴 ∈ { 𝐴 } ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → ( 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ↔ 𝐴 ∈ { 𝐴 } ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝐴 } |
17 |
16
|
elrabsf |
⊢ ( 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ↔ ( 𝐴 ∈ { 𝐴 } ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
18 |
17
|
simprbi |
⊢ ( 𝐴 ∈ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } → [ 𝐴 / 𝑥 ] 𝜑 ) |
19 |
15 18
|
syl |
⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → [ 𝐴 / 𝑥 ] 𝜑 ) |
20 |
19
|
a1d |
⊢ ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
21 |
20
|
ex |
⊢ ( 𝐴 ∈ V → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
22 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
23 |
|
eqeq2 |
⊢ ( { 𝐴 } = ∅ → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ↔ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ) ) |
24 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
25 |
|
eqneqall |
⊢ ( 1 = 0 → ( 1 ≠ 0 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
26 |
24 25
|
mpi |
⊢ ( 1 = 0 → [ 𝐴 / 𝑥 ] 𝜑 ) |
27 |
26
|
eqcoms |
⊢ ( 0 = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |
28 |
5 27
|
sylbi |
⊢ ( ( ♯ ‘ ∅ ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |
29 |
3 28
|
syl6bi |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
30 |
23 29
|
syl6bi |
⊢ ( { 𝐴 } = ∅ → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
31 |
22 30
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
32 |
21 31
|
pm2.61i |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
33 |
10 32
|
jaoi |
⊢ ( ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) ) |
34 |
1 2 33
|
mp2b |
⊢ ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 1 → [ 𝐴 / 𝑥 ] 𝜑 ) |