| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funres | ⊢ ( Fun  𝐴  →  Fun  ( 𝐴  ↾  𝐵 ) ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  Fun  ( 𝐴  ↾  𝐵 ) ) | 
						
							| 3 |  | finresfin | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ↾  𝐵 )  ∈  Fin ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( 𝐴  ↾  𝐵 )  ∈  Fin ) | 
						
							| 5 |  | hashfun | ⊢ ( ( 𝐴  ↾  𝐵 )  ∈  Fin  →  ( Fun  ( 𝐴  ↾  𝐵 )  ↔  ( ♯ ‘ ( 𝐴  ↾  𝐵 ) )  =  ( ♯ ‘ dom  ( 𝐴  ↾  𝐵 ) ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( Fun  ( 𝐴  ↾  𝐵 )  ↔  ( ♯ ‘ ( 𝐴  ↾  𝐵 ) )  =  ( ♯ ‘ dom  ( 𝐴  ↾  𝐵 ) ) ) ) | 
						
							| 7 | 2 6 | mpbid | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ ( 𝐴  ↾  𝐵 ) )  =  ( ♯ ‘ dom  ( 𝐴  ↾  𝐵 ) ) ) | 
						
							| 8 |  | ssdmres | ⊢ ( 𝐵  ⊆  dom  𝐴  ↔  dom  ( 𝐴  ↾  𝐵 )  =  𝐵 ) | 
						
							| 9 | 8 | biimpi | ⊢ ( 𝐵  ⊆  dom  𝐴  →  dom  ( 𝐴  ↾  𝐵 )  =  𝐵 ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  dom  ( 𝐴  ↾  𝐵 )  =  𝐵 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ dom  ( 𝐴  ↾  𝐵 ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 12 | 7 11 | eqtrd | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ ( 𝐴  ↾  𝐵 ) )  =  ( ♯ ‘ 𝐵 ) ) |