Metamath Proof Explorer


Theorem hashresfn

Description: Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Assertion hashresfn ( ♯ ↾ 𝐴 ) Fn 𝐴

Proof

Step Hyp Ref Expression
1 hashf ♯ : V ⟶ ( ℕ0 ∪ { +∞ } )
2 ffn ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V )
3 fnresin2 ( ♯ Fn V → ( ♯ ↾ ( 𝐴 ∩ V ) ) Fn ( 𝐴 ∩ V ) )
4 1 2 3 mp2b ( ♯ ↾ ( 𝐴 ∩ V ) ) Fn ( 𝐴 ∩ V )
5 inv1 ( 𝐴 ∩ V ) = 𝐴
6 5 reseq2i ( ♯ ↾ ( 𝐴 ∩ V ) ) = ( ♯ ↾ 𝐴 )
7 fneq12 ( ( ( ♯ ↾ ( 𝐴 ∩ V ) ) = ( ♯ ↾ 𝐴 ) ∧ ( 𝐴 ∩ V ) = 𝐴 ) → ( ( ♯ ↾ ( 𝐴 ∩ V ) ) Fn ( 𝐴 ∩ V ) ↔ ( ♯ ↾ 𝐴 ) Fn 𝐴 ) )
8 6 5 7 mp2an ( ( ♯ ↾ ( 𝐴 ∩ V ) ) Fn ( 𝐴 ∩ V ) ↔ ( ♯ ↾ 𝐴 ) Fn 𝐴 )
9 4 8 mpbi ( ♯ ↾ 𝐴 ) Fn 𝐴