Description: Restriction of the domain of the size function. (Contributed by Thierry Arnoux, 31-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashresfn | ⊢ ( ♯ ↾ 𝐴 ) Fn 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hashf | ⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) | |
| 2 | ffn | ⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) | |
| 3 | fnresin2 | ⊢ ( ♯ Fn V → ( ♯ ↾ ( 𝐴 ∩ V ) ) Fn ( 𝐴 ∩ V ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( ♯ ↾ ( 𝐴 ∩ V ) ) Fn ( 𝐴 ∩ V ) | 
| 5 | inv1 | ⊢ ( 𝐴 ∩ V ) = 𝐴 | |
| 6 | 5 | reseq2i | ⊢ ( ♯ ↾ ( 𝐴 ∩ V ) ) = ( ♯ ↾ 𝐴 ) | 
| 7 | fneq12 | ⊢ ( ( ( ♯ ↾ ( 𝐴 ∩ V ) ) = ( ♯ ↾ 𝐴 ) ∧ ( 𝐴 ∩ V ) = 𝐴 ) → ( ( ♯ ↾ ( 𝐴 ∩ V ) ) Fn ( 𝐴 ∩ V ) ↔ ( ♯ ↾ 𝐴 ) Fn 𝐴 ) ) | |
| 8 | 6 5 7 | mp2an | ⊢ ( ( ♯ ↾ ( 𝐴 ∩ V ) ) Fn ( 𝐴 ∩ V ) ↔ ( ♯ ↾ 𝐴 ) Fn 𝐴 ) | 
| 9 | 4 8 | mpbi | ⊢ ( ♯ ↾ 𝐴 ) Fn 𝐴 |