| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  Fun  𝐴 ) | 
						
							| 2 |  | hashfun | ⊢ ( 𝐴  ∈  Fin  →  ( Fun  𝐴  ↔  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ dom  𝐴 ) ) ) | 
						
							| 3 | 2 | 3ad2ant2 | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( Fun  𝐴  ↔  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ dom  𝐴 ) ) ) | 
						
							| 4 | 1 3 | mpbid | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ dom  𝐴 ) ) | 
						
							| 5 |  | dmfi | ⊢ ( 𝐴  ∈  Fin  →  dom  𝐴  ∈  Fin ) | 
						
							| 6 | 5 | anim1i | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( dom  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 ) ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( dom  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 ) ) | 
						
							| 8 |  | hashssdif | ⊢ ( ( dom  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ ( dom  𝐴  ∖  𝐵 ) )  =  ( ( ♯ ‘ dom  𝐴 )  −  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ ( dom  𝐴  ∖  𝐵 ) )  =  ( ( ♯ ‘ dom  𝐴 )  −  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( dom  𝐴  ∖  𝐵 ) ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ( ♯ ‘ dom  𝐴 )  −  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 11 |  | ssfi | ⊢ ( ( dom  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  𝐵  ∈  Fin ) | 
						
							| 12 | 11 | ex | ⊢ ( dom  𝐴  ∈  Fin  →  ( 𝐵  ⊆  dom  𝐴  →  𝐵  ∈  Fin ) ) | 
						
							| 13 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | nn0cnd | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 15 | 12 14 | syl6 | ⊢ ( dom  𝐴  ∈  Fin  →  ( 𝐵  ⊆  dom  𝐴  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) ) | 
						
							| 16 | 5 15 | syl | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐵  ⊆  dom  𝐴  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 18 |  | hashcl | ⊢ ( dom  𝐴  ∈  Fin  →  ( ♯ ‘ dom  𝐴 )  ∈  ℕ0 ) | 
						
							| 19 | 5 18 | syl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ dom  𝐴 )  ∈  ℕ0 ) | 
						
							| 20 | 19 | nn0cnd | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ dom  𝐴 )  ∈  ℂ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ dom  𝐴 )  ∈  ℂ ) | 
						
							| 22 | 17 21 | jca | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ( ♯ ‘ 𝐵 )  ∈  ℂ  ∧  ( ♯ ‘ dom  𝐴 )  ∈  ℂ ) ) | 
						
							| 23 | 22 | 3adant1 | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ( ♯ ‘ 𝐵 )  ∈  ℂ  ∧  ( ♯ ‘ dom  𝐴 )  ∈  ℂ ) ) | 
						
							| 24 |  | pncan3 | ⊢ ( ( ( ♯ ‘ 𝐵 )  ∈  ℂ  ∧  ( ♯ ‘ dom  𝐴 )  ∈  ℂ )  →  ( ( ♯ ‘ 𝐵 )  +  ( ( ♯ ‘ dom  𝐴 )  −  ( ♯ ‘ 𝐵 ) ) )  =  ( ♯ ‘ dom  𝐴 ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ( ♯ ‘ 𝐵 )  +  ( ( ♯ ‘ dom  𝐴 )  −  ( ♯ ‘ 𝐵 ) ) )  =  ( ♯ ‘ dom  𝐴 ) ) | 
						
							| 26 | 10 25 | eqtr2d | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ dom  𝐴 )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( dom  𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 27 |  | hashres | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ ( 𝐴  ↾  𝐵 ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ 𝐵 )  =  ( ♯ ‘ ( 𝐴  ↾  𝐵 ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( dom  𝐴  ∖  𝐵 ) ) )  =  ( ( ♯ ‘ ( 𝐴  ↾  𝐵 ) )  +  ( ♯ ‘ ( dom  𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 30 | 4 26 29 | 3eqtrd | ⊢ ( ( Fun  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐵  ⊆  dom  𝐴 )  →  ( ♯ ‘ 𝐴 )  =  ( ( ♯ ‘ ( 𝐴  ↾  𝐵 ) )  +  ( ♯ ‘ ( dom  𝐴  ∖  𝐵 ) ) ) ) |