Metamath Proof Explorer


Theorem hashsdom

Description: Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014)

Ref Expression
Assertion hashsdom ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 hashcl ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 )
2 hashcl ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
3 nn0re ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ∈ ℝ )
4 nn0re ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ♯ ‘ 𝐵 ) ∈ ℝ )
5 ltlen ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ) )
6 3 4 5 syl2an ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ) )
7 1 2 6 syl2an ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ) )
8 hashdom ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
9 eqcom ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) )
10 hashen ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
11 9 10 syl5bb ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐴 ) ↔ 𝐴𝐵 ) )
12 11 necon3abid ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ↔ ¬ 𝐴𝐵 ) )
13 8 12 anbi12d ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) ) )
14 7 13 bitrd ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) ) )
15 brsdom ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) )
16 14 15 bitr4di ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ 𝐴𝐵 ) )