Step |
Hyp |
Ref |
Expression |
1 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
2 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
3 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
4 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
5 |
|
ltlen |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ) ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ) ) |
7 |
1 2 6
|
syl2an |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ) ) |
8 |
|
hashdom |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) |
9 |
|
eqcom |
⊢ ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
10 |
|
hashen |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≈ 𝐵 ) ) |
11 |
9 10
|
syl5bb |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) = ( ♯ ‘ 𝐴 ) ↔ 𝐴 ≈ 𝐵 ) ) |
12 |
11
|
necon3abid |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ↔ ¬ 𝐴 ≈ 𝐵 ) ) |
13 |
8 12
|
anbi12d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ∧ ( ♯ ‘ 𝐵 ) ≠ ( ♯ ‘ 𝐴 ) ) ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ) ) |
14 |
7 13
|
bitrd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ) ) |
15 |
|
brsdom |
⊢ ( 𝐴 ≺ 𝐵 ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ) |
16 |
14 15
|
bitr4di |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) < ( ♯ ‘ 𝐵 ) ↔ 𝐴 ≺ 𝐵 ) ) |