Metamath Proof Explorer


Theorem hashsn01

Description: The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021)

Ref Expression
Assertion hashsn01 ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 )

Proof

Step Hyp Ref Expression
1 hashsng ( 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = 1 )
2 1 olcd ( 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) )
3 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
4 3 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
5 4 fveq2d ( ¬ 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ ∅ ) )
6 hash0 ( ♯ ‘ ∅ ) = 0
7 5 6 eqtrdi ( ¬ 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = 0 )
8 7 orcd ( ¬ 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) )
9 2 8 pm2.61i ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 )