Description: The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashsn01 | ⊢ ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hashsng | ⊢ ( 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = 1 ) | |
| 2 | 1 | olcd | ⊢ ( 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) ) | 
| 3 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 4 | 3 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) | 
| 5 | 4 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ ∅ ) ) | 
| 6 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 7 | 5 6 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = 0 ) | 
| 8 | 7 | orcd | ⊢ ( ¬ 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) ) | 
| 9 | 2 8 | pm2.61i | ⊢ ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) |