Description: The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | hashsn01 | ⊢ ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashsng | ⊢ ( 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = 1 ) | |
2 | 1 | olcd | ⊢ ( 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) ) |
3 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
4 | 3 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
5 | 4 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ ∅ ) ) |
6 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
7 | 5 6 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = 0 ) |
8 | 7 | orcd | ⊢ ( ¬ 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) ) |
9 | 2 8 | pm2.61i | ⊢ ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) |