| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
⊢ 1 ∈ ℤ |
| 2 |
|
en2sn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1 ∈ ℤ ) → { 𝐴 } ≈ { 1 } ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ≈ { 1 } ) |
| 4 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
| 5 |
|
snfi |
⊢ { 1 } ∈ Fin |
| 6 |
|
hashen |
⊢ ( ( { 𝐴 } ∈ Fin ∧ { 1 } ∈ Fin ) → ( ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ { 1 } ) ↔ { 𝐴 } ≈ { 1 } ) ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ { 1 } ) ↔ { 𝐴 } ≈ { 1 } ) |
| 8 |
3 7
|
sylibr |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ { 𝐴 } ) = ( ♯ ‘ { 1 } ) ) |
| 9 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
| 10 |
9
|
fveq2d |
⊢ ( 1 ∈ ℤ → ( ♯ ‘ ( 1 ... 1 ) ) = ( ♯ ‘ { 1 } ) ) |
| 11 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 12 |
|
hashfz1 |
⊢ ( 1 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 1 ) ) = 1 ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ♯ ‘ ( 1 ... 1 ) ) = 1 |
| 14 |
10 13
|
eqtr3di |
⊢ ( 1 ∈ ℤ → ( ♯ ‘ { 1 } ) = 1 ) |
| 15 |
1 14
|
ax-mp |
⊢ ( ♯ ‘ { 1 } ) = 1 |
| 16 |
8 15
|
eqtrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ { 𝐴 } ) = 1 ) |