Metamath Proof Explorer


Theorem hashsnle1

Description: The size of a singleton is less than or equal to 1. (Contributed by AV, 23-Feb-2021)

Ref Expression
Assertion hashsnle1 ( ♯ ‘ { 𝐴 } ) ≤ 1

Proof

Step Hyp Ref Expression
1 hashsn01 ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 )
2 0le1 0 ≤ 1
3 breq1 ( ( ♯ ‘ { 𝐴 } ) = 0 → ( ( ♯ ‘ { 𝐴 } ) ≤ 1 ↔ 0 ≤ 1 ) )
4 2 3 mpbiri ( ( ♯ ‘ { 𝐴 } ) = 0 → ( ♯ ‘ { 𝐴 } ) ≤ 1 )
5 1le1 1 ≤ 1
6 breq1 ( ( ♯ ‘ { 𝐴 } ) = 1 → ( ( ♯ ‘ { 𝐴 } ) ≤ 1 ↔ 1 ≤ 1 ) )
7 5 6 mpbiri ( ( ♯ ‘ { 𝐴 } ) = 1 → ( ♯ ‘ { 𝐴 } ) ≤ 1 )
8 4 7 jaoi ( ( ( ♯ ‘ { 𝐴 } ) = 0 ∨ ( ♯ ‘ { 𝐴 } ) = 1 ) → ( ♯ ‘ { 𝐴 } ) ≤ 1 )
9 1 8 ax-mp ( ♯ ‘ { 𝐴 } ) ≤ 1