Metamath Proof Explorer


Theorem hashsnlei

Description: Get an upper bound on a concretely specified finite set. Base case: singleton set. (Contributed by Mario Carneiro, 11-Feb-2015) (Proof shortened by AV, 23-Feb-2021)

Ref Expression
Assertion hashsnlei ( { 𝐴 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 } ) ≤ 1 )

Proof

Step Hyp Ref Expression
1 snfi { 𝐴 } ∈ Fin
2 hashsnle1 ( ♯ ‘ { 𝐴 } ) ≤ 1
3 1 2 pm3.2i ( { 𝐴 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 } ) ≤ 1 )