Step |
Hyp |
Ref |
Expression |
1 |
|
ssdomg |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴 ) ) |
2 |
1
|
com12 |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∈ Fin → 𝐵 ≼ 𝐴 ) ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ∈ Fin → 𝐵 ≼ 𝐴 ) ) |
4 |
3
|
impcom |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ≼ 𝐴 ) |
5 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
6 |
5
|
adantrl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ∈ Fin ) |
7 |
|
simpl |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐴 ∈ Fin ) |
8 |
|
hashdom |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ 𝐵 ≼ 𝐴 ) ) |
10 |
4 9
|
mpbird |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) |
11 |
10
|
ex |
⊢ ( 𝐴 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
12 |
|
hashinf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) = +∞ ) |
13 |
|
ssexg |
⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐵 ∈ V ) |
14 |
13
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
15 |
|
hashxrcl |
⊢ ( 𝐵 ∈ V → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) |
16 |
|
pnfge |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℝ* → ( ♯ ‘ 𝐵 ) ≤ +∞ ) |
17 |
14 15 16
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ +∞ ) |
18 |
17
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ +∞ ) ) |
19 |
18
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ +∞ ) ) |
20 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐵 ) ≤ +∞ ) ) |
21 |
20
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∧ 𝐴 ∈ 𝑉 ) → ( ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐵 ) ≤ +∞ ) ) |
22 |
19 21
|
sylibrd |
⊢ ( ( ( ♯ ‘ 𝐴 ) = +∞ ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
23 |
22
|
expcom |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = +∞ → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) = +∞ → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) ) |
25 |
12 24
|
mpd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐵 ⊆ 𝐴 → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
26 |
25
|
impancom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ¬ 𝐴 ∈ Fin → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
27 |
26
|
com12 |
⊢ ( ¬ 𝐴 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) ) |
28 |
11 27
|
pm2.61i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ≤ ( ♯ ‘ 𝐴 ) ) |