Step |
Hyp |
Ref |
Expression |
1 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
2 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ 𝐵 ) ∈ Fin ) |
3 |
|
disjdif |
⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
4 |
|
hashun |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∖ 𝐵 ) ∈ Fin ∧ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) → ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
5 |
3 4
|
mp3an3 |
⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∖ 𝐵 ) ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
6 |
1 2 5
|
syl2an |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
7 |
6
|
anabss1 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
8 |
|
undif |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
9 |
8
|
biimpi |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
10 |
9
|
fveqeq2d |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ↔ ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ( ♯ ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ↔ ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) ) |
12 |
7 11
|
mpbid |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐴 ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
13 |
12
|
eqcomd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) |
14 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
15 |
14
|
nn0cnd |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
16 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
17 |
1 16
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
18 |
17
|
nn0cnd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
19 |
|
hashcl |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ Fin → ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℕ0 ) |
20 |
2 19
|
syl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℕ0 ) |
21 |
20
|
nn0cnd |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) |
22 |
|
subadd |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ∧ ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) ) |
23 |
15 18 21 22
|
syl3an |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) ∧ 𝐴 ∈ Fin ) → ( ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) ) |
24 |
23
|
3anidm13 |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) ) → ( ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) ) |
25 |
24
|
anabss5 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( ♯ ‘ 𝐴 ) ) ) |
26 |
13 25
|
mpbird |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
27 |
26
|
eqcomd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∖ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐵 ) ) ) |