| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  𝐵  ∈  Fin ) | 
						
							| 2 |  | diffi | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ∖  𝐵 )  ∈  Fin ) | 
						
							| 3 |  | disjdif | ⊢ ( 𝐵  ∩  ( 𝐴  ∖  𝐵 ) )  =  ∅ | 
						
							| 4 |  | hashun | ⊢ ( ( 𝐵  ∈  Fin  ∧  ( 𝐴  ∖  𝐵 )  ∈  Fin  ∧  ( 𝐵  ∩  ( 𝐴  ∖  𝐵 ) )  =  ∅ )  →  ( ♯ ‘ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 5 | 3 4 | mp3an3 | ⊢ ( ( 𝐵  ∈  Fin  ∧  ( 𝐴  ∖  𝐵 )  ∈  Fin )  →  ( ♯ ‘ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 6 | 1 2 5 | syl2an | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  ∧  𝐴  ∈  Fin )  →  ( ♯ ‘ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 7 | 6 | anabss1 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  ( ♯ ‘ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 8 |  | undif | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴 ) | 
						
							| 9 | 8 | biimpi | ⊢ ( 𝐵  ⊆  𝐴  →  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴 ) | 
						
							| 10 | 9 | fveqeq2d | ⊢ ( 𝐵  ⊆  𝐴  →  ( ( ♯ ‘ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) )  ↔  ( ♯ ‘ 𝐴 )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  ( ( ♯ ‘ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) )  ↔  ( ♯ ‘ 𝐴 )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) ) ) ) | 
						
							| 12 | 7 11 | mpbid | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  ( ♯ ‘ 𝐴 )  =  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) )  =  ( ♯ ‘ 𝐴 ) ) | 
						
							| 14 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | nn0cnd | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 16 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 17 | 1 16 | syl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 18 | 17 | nn0cnd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  ( ♯ ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 19 |  | hashcl | ⊢ ( ( 𝐴  ∖  𝐵 )  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 20 | 2 19 | syl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 21 | 20 | nn0cnd | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) )  ∈  ℂ ) | 
						
							| 22 |  | subadd | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℂ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℂ  ∧  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) )  ∈  ℂ )  →  ( ( ( ♯ ‘ 𝐴 )  −  ( ♯ ‘ 𝐵 ) )  =  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) )  ↔  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) )  =  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 23 | 15 18 21 22 | syl3an | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  ∧  𝐴  ∈  Fin )  →  ( ( ( ♯ ‘ 𝐴 )  −  ( ♯ ‘ 𝐵 ) )  =  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) )  ↔  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) )  =  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 24 | 23 | 3anidm13 | ⊢ ( ( 𝐴  ∈  Fin  ∧  ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 ) )  →  ( ( ( ♯ ‘ 𝐴 )  −  ( ♯ ‘ 𝐵 ) )  =  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) )  ↔  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) )  =  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 25 | 24 | anabss5 | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  ( ( ( ♯ ‘ 𝐴 )  −  ( ♯ ‘ 𝐵 ) )  =  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) )  ↔  ( ( ♯ ‘ 𝐵 )  +  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) )  =  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 26 | 13 25 | mpbird | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  ( ( ♯ ‘ 𝐴 )  −  ( ♯ ‘ 𝐵 ) )  =  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ⊆  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∖  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  −  ( ♯ ‘ 𝐵 ) ) ) |