| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  𝐶  ∈  𝑊 ) | 
						
							| 2 |  | prfi | ⊢ { 𝐴 ,  𝐵 }  ∈  Fin | 
						
							| 3 | 2 | a1i | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  { 𝐴 ,  𝐵 }  ∈  Fin ) | 
						
							| 4 |  | elprg | ⊢ ( 𝐶  ∈  𝑊  →  ( 𝐶  ∈  { 𝐴 ,  𝐵 }  ↔  ( 𝐶  =  𝐴  ∨  𝐶  =  𝐵 ) ) ) | 
						
							| 5 |  | orcom | ⊢ ( ( 𝐶  =  𝐴  ∨  𝐶  =  𝐵 )  ↔  ( 𝐶  =  𝐵  ∨  𝐶  =  𝐴 ) ) | 
						
							| 6 |  | nne | ⊢ ( ¬  𝐵  ≠  𝐶  ↔  𝐵  =  𝐶 ) | 
						
							| 7 |  | eqcom | ⊢ ( 𝐵  =  𝐶  ↔  𝐶  =  𝐵 ) | 
						
							| 8 | 6 7 | bitr2i | ⊢ ( 𝐶  =  𝐵  ↔  ¬  𝐵  ≠  𝐶 ) | 
						
							| 9 |  | nne | ⊢ ( ¬  𝐶  ≠  𝐴  ↔  𝐶  =  𝐴 ) | 
						
							| 10 | 9 | bicomi | ⊢ ( 𝐶  =  𝐴  ↔  ¬  𝐶  ≠  𝐴 ) | 
						
							| 11 | 8 10 | orbi12i | ⊢ ( ( 𝐶  =  𝐵  ∨  𝐶  =  𝐴 )  ↔  ( ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) | 
						
							| 12 | 5 11 | bitri | ⊢ ( ( 𝐶  =  𝐴  ∨  𝐶  =  𝐵 )  ↔  ( ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) | 
						
							| 13 | 4 12 | bitrdi | ⊢ ( 𝐶  ∈  𝑊  →  ( 𝐶  ∈  { 𝐴 ,  𝐵 }  ↔  ( ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) ) | 
						
							| 14 | 13 | biimpd | ⊢ ( 𝐶  ∈  𝑊  →  ( 𝐶  ∈  { 𝐴 ,  𝐵 }  →  ( ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( 𝐶  ∈  { 𝐴 ,  𝐵 }  →  ( ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  𝐶  ∈  { 𝐴 ,  𝐵 } )  →  ( ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) | 
						
							| 17 | 16 | olcd | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  𝐶  ∈  { 𝐴 ,  𝐵 } )  →  ( ¬  𝐴  ≠  𝐵  ∨  ( ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) ) | 
						
							| 18 | 17 | ex | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( 𝐶  ∈  { 𝐴 ,  𝐵 }  →  ( ¬  𝐴  ≠  𝐵  ∨  ( ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) ) ) | 
						
							| 19 |  | 3orass | ⊢ ( ( ¬  𝐴  ≠  𝐵  ∨  ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 )  ↔  ( ¬  𝐴  ≠  𝐵  ∨  ( ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) ) | 
						
							| 20 | 18 19 | imbitrrdi | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( 𝐶  ∈  { 𝐴 ,  𝐵 }  →  ( ¬  𝐴  ≠  𝐵  ∨  ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) ) | 
						
							| 21 |  | 3ianor | ⊢ ( ¬  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 )  ↔  ( ¬  𝐴  ≠  𝐵  ∨  ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 ) ) | 
						
							| 22 | 20 21 | imbitrrdi | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( 𝐶  ∈  { 𝐴 ,  𝐵 }  →  ¬  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) ) ) | 
						
							| 23 | 22 | con2d | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 )  →  ¬  𝐶  ∈  { 𝐴 ,  𝐵 } ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  ¬  𝐶  ∈  { 𝐴 ,  𝐵 } ) | 
						
							| 25 |  | hashunsng | ⊢ ( 𝐶  ∈  𝑊  →  ( ( { 𝐴 ,  𝐵 }  ∈  Fin  ∧  ¬  𝐶  ∈  { 𝐴 ,  𝐵 } )  →  ( ♯ ‘ ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) )  =  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  +  1 ) ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝐶  ∈  𝑊  ∧  ( { 𝐴 ,  𝐵 }  ∈  Fin  ∧  ¬  𝐶  ∈  { 𝐴 ,  𝐵 } ) )  →  ( ♯ ‘ ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) )  =  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  +  1 ) ) | 
						
							| 27 | 1 3 24 26 | syl12anc | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  ( ♯ ‘ ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) )  =  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  +  1 ) ) | 
						
							| 28 |  | simpr1 | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 29 |  | 3simpa | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 31 |  | hashprg | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴  ≠  𝐵  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  ( 𝐴  ≠  𝐵  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) ) | 
						
							| 33 | 28 32 | mpbid | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  2 ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  +  1 )  =  ( 2  +  1 ) ) | 
						
							| 35 | 27 34 | eqtrd | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  ( ♯ ‘ ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) )  =  ( 2  +  1 ) ) | 
						
							| 36 |  | df-tp | ⊢ { 𝐴 ,  𝐵 ,  𝐶 }  =  ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) | 
						
							| 37 | 36 | fveq2i | ⊢ ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  =  ( ♯ ‘ ( { 𝐴 ,  𝐵 }  ∪  { 𝐶 } ) ) | 
						
							| 38 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 39 | 35 37 38 | 3eqtr4g | ⊢ ( ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  =  3 ) | 
						
							| 40 | 39 | ex | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  =  3 ) ) | 
						
							| 41 |  | nne | ⊢ ( ¬  𝐴  ≠  𝐵  ↔  𝐴  =  𝐵 ) | 
						
							| 42 |  | hashprlei | ⊢ ( { 𝐵 ,  𝐶 }  ∈  Fin  ∧  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2 ) | 
						
							| 43 |  | prfi | ⊢ { 𝐵 ,  𝐶 }  ∈  Fin | 
						
							| 44 |  | hashcl | ⊢ ( { 𝐵 ,  𝐶 }  ∈  Fin  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℕ0 ) | 
						
							| 45 | 44 | nn0zd | ⊢ ( { 𝐵 ,  𝐶 }  ∈  Fin  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℤ ) | 
						
							| 46 | 43 45 | ax-mp | ⊢ ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℤ | 
						
							| 47 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 48 |  | zleltp1 | ⊢ ( ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2  ↔  ( ♯ ‘ { 𝐵 ,  𝐶 } )  <  ( 2  +  1 ) ) ) | 
						
							| 49 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 50 | 49 | a1i | ⊢ ( ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( 2  +  1 )  =  3 ) | 
						
							| 51 | 50 | breq2d | ⊢ ( ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  <  ( 2  +  1 )  ↔  ( ♯ ‘ { 𝐵 ,  𝐶 } )  <  3 ) ) | 
						
							| 52 | 51 | biimpd | ⊢ ( ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  <  ( 2  +  1 )  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  <  3 ) ) | 
						
							| 53 | 48 52 | sylbid | ⊢ ( ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  <  3 ) ) | 
						
							| 54 | 46 47 53 | mp2an | ⊢ ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  <  3 ) | 
						
							| 55 | 44 | nn0red | ⊢ ( { 𝐵 ,  𝐶 }  ∈  Fin  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℝ ) | 
						
							| 56 | 43 55 | ax-mp | ⊢ ( ♯ ‘ { 𝐵 ,  𝐶 } )  ∈  ℝ | 
						
							| 57 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 58 | 56 57 | ltnei | ⊢ ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  <  3  →  3  ≠  ( ♯ ‘ { 𝐵 ,  𝐶 } ) ) | 
						
							| 59 | 54 58 | syl | ⊢ ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2  →  3  ≠  ( ♯ ‘ { 𝐵 ,  𝐶 } ) ) | 
						
							| 60 | 59 | necomd | ⊢ ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≠  3 ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( { 𝐵 ,  𝐶 }  ∈  Fin  ∧  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≤  2 )  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≠  3 ) | 
						
							| 62 | 42 61 | mp1i | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≠  3 ) | 
						
							| 63 |  | tpeq1 | ⊢ ( 𝐴  =  𝐵  →  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐵 ,  𝐵 ,  𝐶 } ) | 
						
							| 64 |  | tpidm12 | ⊢ { 𝐵 ,  𝐵 ,  𝐶 }  =  { 𝐵 ,  𝐶 } | 
						
							| 65 | 63 64 | eqtr2di | ⊢ ( 𝐴  =  𝐵  →  { 𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 ,  𝐶 } ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( 𝐴  =  𝐵  →  ( ♯ ‘ { 𝐵 ,  𝐶 } )  =  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } ) ) | 
						
							| 67 | 66 | neeq1d | ⊢ ( 𝐴  =  𝐵  →  ( ( ♯ ‘ { 𝐵 ,  𝐶 } )  ≠  3  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 68 | 62 67 | imbitrid | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 69 | 41 68 | sylbi | ⊢ ( ¬  𝐴  ≠  𝐵  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 70 |  | hashprlei | ⊢ ( { 𝐴 ,  𝐶 }  ∈  Fin  ∧  ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≤  2 ) | 
						
							| 71 |  | prfi | ⊢ { 𝐴 ,  𝐶 }  ∈  Fin | 
						
							| 72 |  | hashcl | ⊢ ( { 𝐴 ,  𝐶 }  ∈  Fin  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℕ0 ) | 
						
							| 73 | 72 | nn0zd | ⊢ ( { 𝐴 ,  𝐶 }  ∈  Fin  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℤ ) | 
						
							| 74 | 71 73 | ax-mp | ⊢ ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℤ | 
						
							| 75 |  | zleltp1 | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≤  2  ↔  ( ♯ ‘ { 𝐴 ,  𝐶 } )  <  ( 2  +  1 ) ) ) | 
						
							| 76 | 49 | a1i | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( 2  +  1 )  =  3 ) | 
						
							| 77 | 76 | breq2d | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  <  ( 2  +  1 )  ↔  ( ♯ ‘ { 𝐴 ,  𝐶 } )  <  3 ) ) | 
						
							| 78 | 77 | biimpd | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  <  ( 2  +  1 )  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  <  3 ) ) | 
						
							| 79 | 75 78 | sylbid | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≤  2  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  <  3 ) ) | 
						
							| 80 | 74 47 79 | mp2an | ⊢ ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≤  2  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  <  3 ) | 
						
							| 81 | 72 | nn0red | ⊢ ( { 𝐴 ,  𝐶 }  ∈  Fin  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℝ ) | 
						
							| 82 | 71 81 | ax-mp | ⊢ ( ♯ ‘ { 𝐴 ,  𝐶 } )  ∈  ℝ | 
						
							| 83 | 82 57 | ltnei | ⊢ ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  <  3  →  3  ≠  ( ♯ ‘ { 𝐴 ,  𝐶 } ) ) | 
						
							| 84 | 80 83 | syl | ⊢ ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≤  2  →  3  ≠  ( ♯ ‘ { 𝐴 ,  𝐶 } ) ) | 
						
							| 85 | 84 | necomd | ⊢ ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≤  2  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≠  3 ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( { 𝐴 ,  𝐶 }  ∈  Fin  ∧  ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≤  2 )  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≠  3 ) | 
						
							| 87 | 70 86 | mp1i | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≠  3 ) | 
						
							| 88 |  | tpeq2 | ⊢ ( 𝐵  =  𝐶  →  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐶 ,  𝐶 } ) | 
						
							| 89 |  | tpidm23 | ⊢ { 𝐴 ,  𝐶 ,  𝐶 }  =  { 𝐴 ,  𝐶 } | 
						
							| 90 | 88 89 | eqtr2di | ⊢ ( 𝐵  =  𝐶  →  { 𝐴 ,  𝐶 }  =  { 𝐴 ,  𝐵 ,  𝐶 } ) | 
						
							| 91 | 90 | fveq2d | ⊢ ( 𝐵  =  𝐶  →  ( ♯ ‘ { 𝐴 ,  𝐶 } )  =  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } ) ) | 
						
							| 92 | 91 | neeq1d | ⊢ ( 𝐵  =  𝐶  →  ( ( ♯ ‘ { 𝐴 ,  𝐶 } )  ≠  3  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 93 | 87 92 | imbitrid | ⊢ ( 𝐵  =  𝐶  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 94 | 6 93 | sylbi | ⊢ ( ¬  𝐵  ≠  𝐶  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 95 |  | hashprlei | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  ∧  ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≤  2 ) | 
						
							| 96 |  | hashcl | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℕ0 ) | 
						
							| 97 | 96 | nn0zd | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℤ ) | 
						
							| 98 | 2 97 | ax-mp | ⊢ ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℤ | 
						
							| 99 |  | zleltp1 | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≤  2  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 } )  <  ( 2  +  1 ) ) ) | 
						
							| 100 | 49 | a1i | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( 2  +  1 )  =  3 ) | 
						
							| 101 | 100 | breq2d | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  <  ( 2  +  1 )  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 } )  <  3 ) ) | 
						
							| 102 | 101 | biimpd | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  <  ( 2  +  1 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  <  3 ) ) | 
						
							| 103 | 99 102 | sylbid | ⊢ ( ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≤  2  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  <  3 ) ) | 
						
							| 104 | 98 47 103 | mp2an | ⊢ ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≤  2  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  <  3 ) | 
						
							| 105 | 96 | nn0red | ⊢ ( { 𝐴 ,  𝐵 }  ∈  Fin  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℝ ) | 
						
							| 106 | 2 105 | ax-mp | ⊢ ( ♯ ‘ { 𝐴 ,  𝐵 } )  ∈  ℝ | 
						
							| 107 | 106 57 | ltnei | ⊢ ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  <  3  →  3  ≠  ( ♯ ‘ { 𝐴 ,  𝐵 } ) ) | 
						
							| 108 | 104 107 | syl | ⊢ ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≤  2  →  3  ≠  ( ♯ ‘ { 𝐴 ,  𝐵 } ) ) | 
						
							| 109 | 108 | necomd | ⊢ ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≤  2  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≠  3 ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( { 𝐴 ,  𝐵 }  ∈  Fin  ∧  ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≤  2 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≠  3 ) | 
						
							| 111 | 95 110 | mp1i | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≠  3 ) | 
						
							| 112 |  | tpeq3 | ⊢ ( 𝐶  =  𝐴  →  { 𝐴 ,  𝐵 ,  𝐶 }  =  { 𝐴 ,  𝐵 ,  𝐴 } ) | 
						
							| 113 |  | tpidm13 | ⊢ { 𝐴 ,  𝐵 ,  𝐴 }  =  { 𝐴 ,  𝐵 } | 
						
							| 114 | 112 113 | eqtr2di | ⊢ ( 𝐶  =  𝐴  →  { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐵 ,  𝐶 } ) | 
						
							| 115 | 114 | fveq2d | ⊢ ( 𝐶  =  𝐴  →  ( ♯ ‘ { 𝐴 ,  𝐵 } )  =  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } ) ) | 
						
							| 116 | 115 | neeq1d | ⊢ ( 𝐶  =  𝐴  →  ( ( ♯ ‘ { 𝐴 ,  𝐵 } )  ≠  3  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 117 | 111 116 | imbitrid | ⊢ ( 𝐶  =  𝐴  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 118 | 9 117 | sylbi | ⊢ ( ¬  𝐶  ≠  𝐴  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 119 | 69 94 118 | 3jaoi | ⊢ ( ( ¬  𝐴  ≠  𝐵  ∨  ¬  𝐵  ≠  𝐶  ∨  ¬  𝐶  ≠  𝐴 )  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 120 | 21 119 | sylbi | ⊢ ( ¬  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 )  →  ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 121 | 120 | com12 | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ¬  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 )  →  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  ≠  3 ) ) | 
						
							| 122 | 121 | necon4bd | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  =  3  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 ) ) ) | 
						
							| 123 | 40 122 | impbid | ⊢ ( ( 𝐴  ∈  𝑈  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶  ∧  𝐶  ≠  𝐴 )  ↔  ( ♯ ‘ { 𝐴 ,  𝐵 ,  𝐶 } )  =  3 ) ) |