Metamath Proof Explorer


Theorem hashtpg

Description: The size of an unordered triple of three different elements. (Contributed by Alexander van der Vekens, 10-Nov-2017) (Revised by AV, 18-Sep-2021)

Ref Expression
Assertion hashtpg ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) )

Proof

Step Hyp Ref Expression
1 simpl3 ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → 𝐶𝑊 )
2 prfi { 𝐴 , 𝐵 } ∈ Fin
3 2 a1i ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → { 𝐴 , 𝐵 } ∈ Fin )
4 elprg ( 𝐶𝑊 → ( 𝐶 ∈ { 𝐴 , 𝐵 } ↔ ( 𝐶 = 𝐴𝐶 = 𝐵 ) ) )
5 orcom ( ( 𝐶 = 𝐴𝐶 = 𝐵 ) ↔ ( 𝐶 = 𝐵𝐶 = 𝐴 ) )
6 nne ( ¬ 𝐵𝐶𝐵 = 𝐶 )
7 eqcom ( 𝐵 = 𝐶𝐶 = 𝐵 )
8 6 7 bitr2i ( 𝐶 = 𝐵 ↔ ¬ 𝐵𝐶 )
9 nne ( ¬ 𝐶𝐴𝐶 = 𝐴 )
10 9 bicomi ( 𝐶 = 𝐴 ↔ ¬ 𝐶𝐴 )
11 8 10 orbi12i ( ( 𝐶 = 𝐵𝐶 = 𝐴 ) ↔ ( ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) )
12 5 11 bitri ( ( 𝐶 = 𝐴𝐶 = 𝐵 ) ↔ ( ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) )
13 4 12 bitrdi ( 𝐶𝑊 → ( 𝐶 ∈ { 𝐴 , 𝐵 } ↔ ( ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) ) )
14 13 biimpd ( 𝐶𝑊 → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) ) )
15 14 3ad2ant3 ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) ) )
16 15 imp ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 } ) → ( ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) )
17 16 olcd ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 } ) → ( ¬ 𝐴𝐵 ∨ ( ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) ) )
18 17 ex ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐴𝐵 ∨ ( ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) ) ) )
19 3orass ( ( ¬ 𝐴𝐵 ∨ ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) ↔ ( ¬ 𝐴𝐵 ∨ ( ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) ) )
20 18 19 syl6ibr ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐴𝐵 ∨ ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) ) )
21 3ianor ( ¬ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ↔ ( ¬ 𝐴𝐵 ∨ ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) )
22 20 21 syl6ibr ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( 𝐶 ∈ { 𝐴 , 𝐵 } → ¬ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) )
23 22 con2d ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) )
24 23 imp ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → ¬ 𝐶 ∈ { 𝐴 , 𝐵 } )
25 hashunsng ( 𝐶𝑊 → ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) ) )
26 25 imp ( ( 𝐶𝑊 ∧ ( { 𝐴 , 𝐵 } ∈ Fin ∧ ¬ 𝐶 ∈ { 𝐴 , 𝐵 } ) ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) )
27 1 3 24 26 syl12anc ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) )
28 simpr1 ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → 𝐴𝐵 )
29 3simpa ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( 𝐴𝑈𝐵𝑉 ) )
30 29 adantr ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → ( 𝐴𝑈𝐵𝑉 ) )
31 hashprg ( ( 𝐴𝑈𝐵𝑉 ) → ( 𝐴𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) )
32 30 31 syl ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → ( 𝐴𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) )
33 28 32 mpbid ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 )
34 33 oveq1d ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) + 1 ) = ( 2 + 1 ) )
35 27 34 eqtrd ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ) = ( 2 + 1 ) )
36 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
37 36 fveq2i ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = ( ♯ ‘ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) )
38 df-3 3 = ( 2 + 1 )
39 35 37 38 3eqtr4g ( ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) ∧ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 )
40 39 ex ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) )
41 nne ( ¬ 𝐴𝐵𝐴 = 𝐵 )
42 hashprlei ( { 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 )
43 prfi { 𝐵 , 𝐶 } ∈ Fin
44 hashcl ( { 𝐵 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℕ0 )
45 44 nn0zd ( { 𝐵 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ )
46 43 45 ax-mp ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ
47 2z 2 ∈ ℤ
48 zleltp1 ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) < ( 2 + 1 ) ) )
49 2p1e3 ( 2 + 1 ) = 3
50 49 a1i ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 + 1 ) = 3 )
51 50 breq2d ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) < ( 2 + 1 ) ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) )
52 51 biimpd ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) < ( 2 + 1 ) → ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) )
53 48 52 sylbid ( ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 ) )
54 46 47 53 mp2an ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 )
55 44 nn0red ( { 𝐵 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℝ )
56 43 55 ax-mp ( ♯ ‘ { 𝐵 , 𝐶 } ) ∈ ℝ
57 3re 3 ∈ ℝ
58 56 57 ltnei ( ( ♯ ‘ { 𝐵 , 𝐶 } ) < 3 → 3 ≠ ( ♯ ‘ { 𝐵 , 𝐶 } ) )
59 54 58 syl ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → 3 ≠ ( ♯ ‘ { 𝐵 , 𝐶 } ) )
60 59 necomd ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 )
61 60 adantl ( ( { 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 )
62 42 61 mp1i ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 )
63 tpeq1 ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐵 , 𝐶 } )
64 tpidm12 { 𝐵 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 }
65 63 64 eqtr2di ( 𝐴 = 𝐵 → { 𝐵 , 𝐶 } = { 𝐴 , 𝐵 , 𝐶 } )
66 65 fveq2d ( 𝐴 = 𝐵 → ( ♯ ‘ { 𝐵 , 𝐶 } ) = ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) )
67 66 neeq1d ( 𝐴 = 𝐵 → ( ( ♯ ‘ { 𝐵 , 𝐶 } ) ≠ 3 ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
68 62 67 syl5ib ( 𝐴 = 𝐵 → ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
69 41 68 sylbi ( ¬ 𝐴𝐵 → ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
70 hashprlei ( { 𝐴 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 )
71 prfi { 𝐴 , 𝐶 } ∈ Fin
72 hashcl ( { 𝐴 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℕ0 )
73 72 nn0zd ( { 𝐴 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ )
74 71 73 ax-mp ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ
75 zleltp1 ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 ↔ ( ♯ ‘ { 𝐴 , 𝐶 } ) < ( 2 + 1 ) ) )
76 49 a1i ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 + 1 ) = 3 )
77 76 breq2d ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) < ( 2 + 1 ) ↔ ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) )
78 77 biimpd ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) < ( 2 + 1 ) → ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) )
79 75 78 sylbid ( ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 ) )
80 74 47 79 mp2an ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 )
81 72 nn0red ( { 𝐴 , 𝐶 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℝ )
82 71 81 ax-mp ( ♯ ‘ { 𝐴 , 𝐶 } ) ∈ ℝ
83 82 57 ltnei ( ( ♯ ‘ { 𝐴 , 𝐶 } ) < 3 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐶 } ) )
84 80 83 syl ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐶 } ) )
85 84 necomd ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 )
86 85 adantl ( ( { 𝐴 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐶 } ) ≤ 2 ) → ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 )
87 70 86 mp1i ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 )
88 tpeq2 ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 , 𝐶 } )
89 tpidm23 { 𝐴 , 𝐶 , 𝐶 } = { 𝐴 , 𝐶 }
90 88 89 eqtr2di ( 𝐵 = 𝐶 → { 𝐴 , 𝐶 } = { 𝐴 , 𝐵 , 𝐶 } )
91 90 fveq2d ( 𝐵 = 𝐶 → ( ♯ ‘ { 𝐴 , 𝐶 } ) = ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) )
92 91 neeq1d ( 𝐵 = 𝐶 → ( ( ♯ ‘ { 𝐴 , 𝐶 } ) ≠ 3 ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
93 87 92 syl5ib ( 𝐵 = 𝐶 → ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
94 6 93 sylbi ( ¬ 𝐵𝐶 → ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
95 hashprlei ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 )
96 hashcl ( { 𝐴 , 𝐵 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℕ0 )
97 96 nn0zd ( { 𝐴 , 𝐵 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ )
98 2 97 ax-mp ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ
99 zleltp1 ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) < ( 2 + 1 ) ) )
100 49 a1i ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( 2 + 1 ) = 3 )
101 100 breq2d ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) < ( 2 + 1 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) )
102 101 biimpd ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) < ( 2 + 1 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) )
103 99 102 sylbid ( ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 ) )
104 98 47 103 mp2an ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 )
105 96 nn0red ( { 𝐴 , 𝐵 } ∈ Fin → ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℝ )
106 2 105 ax-mp ( ♯ ‘ { 𝐴 , 𝐵 } ) ∈ ℝ
107 106 57 ltnei ( ( ♯ ‘ { 𝐴 , 𝐵 } ) < 3 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐵 } ) )
108 104 107 syl ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → 3 ≠ ( ♯ ‘ { 𝐴 , 𝐵 } ) )
109 108 necomd ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 )
110 109 adantl ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 )
111 95 110 mp1i ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 )
112 tpeq3 ( 𝐶 = 𝐴 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 , 𝐴 } )
113 tpidm13 { 𝐴 , 𝐵 , 𝐴 } = { 𝐴 , 𝐵 }
114 112 113 eqtr2di ( 𝐶 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } )
115 114 fveq2d ( 𝐶 = 𝐴 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) )
116 115 neeq1d ( 𝐶 = 𝐴 → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) ≠ 3 ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
117 111 116 syl5ib ( 𝐶 = 𝐴 → ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
118 9 117 sylbi ( ¬ 𝐶𝐴 → ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
119 69 94 118 3jaoi ( ( ¬ 𝐴𝐵 ∨ ¬ 𝐵𝐶 ∨ ¬ 𝐶𝐴 ) → ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
120 21 119 sylbi ( ¬ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
121 120 com12 ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ¬ ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) → ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≠ 3 ) )
122 121 necon4bd ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 → ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ) )
123 40 122 impbid ( ( 𝐴𝑈𝐵𝑉𝐶𝑊 ) → ( ( 𝐴𝐵𝐵𝐶𝐶𝐴 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) = 3 ) )