Metamath Proof Explorer


Theorem hashtplei

Description: An unordered triple has at most three elements. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion hashtplei ( { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≤ 3 )

Proof

Step Hyp Ref Expression
1 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
2 hashprlei ( { 𝐴 , 𝐵 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) ≤ 2 )
3 hashsnlei ( { 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐶 } ) ≤ 1 )
4 2nn0 2 ∈ ℕ0
5 1nn0 1 ∈ ℕ0
6 2p1e3 ( 2 + 1 ) = 3
7 1 2 3 4 5 6 hashunlei ( { 𝐴 , 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐴 , 𝐵 , 𝐶 } ) ≤ 3 )