Step |
Hyp |
Ref |
Expression |
1 |
|
ficardun |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( card ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) |
2 |
1
|
fveq2d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) ) |
3 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
4 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
5 |
4
|
hashgval |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
6 |
3 5
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
8 |
|
ficardom |
⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) |
9 |
|
ficardom |
⊢ ( 𝐵 ∈ Fin → ( card ‘ 𝐵 ) ∈ ω ) |
10 |
4
|
hashgadd |
⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐵 ) ∈ ω ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) + ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐵 ) ) ) ) |
11 |
8 9 10
|
syl2an |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) + ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐵 ) ) ) ) |
12 |
4
|
hashgval |
⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
13 |
4
|
hashgval |
⊢ ( 𝐵 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ) |
14 |
12 13
|
oveqan12d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) + ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
15 |
11 14
|
eqtrd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ( card ‘ 𝐴 ) +o ( card ‘ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
17 |
2 7 16
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |