| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diffi |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ 𝐴 ) ∈ Fin ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐵 ∖ 𝐴 ) ∈ Fin ) |
| 3 |
|
simpl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 4 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 5 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) → ( 𝐴 ∩ 𝐵 ) ∈ Fin ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∩ 𝐵 ) ∈ Fin ) |
| 7 |
|
sslin |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) ) |
| 8 |
4 7
|
ax-mp |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) |
| 9 |
|
disjdifr |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) = ∅ |
| 10 |
|
sseq0 |
⊢ ( ( ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) ⊆ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) ∧ ( ( 𝐵 ∖ 𝐴 ) ∩ 𝐴 ) = ∅ ) → ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
| 11 |
8 9 10
|
mp2an |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ |
| 12 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ ) |
| 13 |
|
hashun |
⊢ ( ( ( 𝐵 ∖ 𝐴 ) ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) ∈ Fin ∧ ( ( 𝐵 ∖ 𝐴 ) ∩ ( 𝐴 ∩ 𝐵 ) ) = ∅ ) → ( ♯ ‘ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) + ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 14 |
2 6 12 13
|
syl3anc |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) + ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 15 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
| 16 |
15
|
uneq2i |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐵 ∩ 𝐴 ) ) |
| 17 |
|
uncom |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐵 ∩ 𝐴 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
| 18 |
|
inundif |
⊢ ( ( 𝐵 ∩ 𝐴 ) ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 |
| 19 |
16 17 18
|
3eqtri |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) = 𝐵 |
| 20 |
19
|
a1i |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) = 𝐵 ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( ( 𝐵 ∖ 𝐴 ) ∪ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
| 22 |
14 21
|
eqtr3d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) + ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
| 23 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 25 |
24
|
nn0cnd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 26 |
|
hashcl |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ Fin → ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℕ0 ) |
| 27 |
6 26
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℕ0 ) |
| 28 |
27
|
nn0cnd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
| 29 |
|
hashcl |
⊢ ( ( 𝐵 ∖ 𝐴 ) ∈ Fin → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℕ0 ) |
| 30 |
2 29
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℕ0 ) |
| 31 |
30
|
nn0cnd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ℂ ) |
| 32 |
25 28 31
|
subadd2d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ↔ ( ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) + ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ 𝐵 ) ) ) |
| 33 |
22 32
|
mpbird |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 35 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 37 |
36
|
nn0cnd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 38 |
37 25 28
|
addsubassd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 39 |
|
undif2 |
⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) |
| 40 |
39
|
fveq2i |
⊢ ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 41 |
|
disjdif |
⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ |
| 42 |
41
|
a1i |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) |
| 43 |
|
hashun |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∖ 𝐴 ) ∈ Fin ∧ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 44 |
3 2 42 43
|
syl3anc |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 45 |
40 44
|
eqtr3id |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 46 |
34 38 45
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ ( 𝐴 ∩ 𝐵 ) ) ) ) |