Description: The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashuni.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| hashuni.2 | ⊢ ( 𝜑 → 𝐴 ⊆ Fin ) | ||
| hashuni.3 | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝑥 ) | ||
| Assertion | hashuni | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝐴 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hashuni.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | hashuni.2 | ⊢ ( 𝜑 → 𝐴 ⊆ Fin ) | |
| 3 | hashuni.3 | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝑥 ) | |
| 4 | uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 5 | 4 | fveq2i | ⊢ ( ♯ ‘ ∪ 𝐴 ) = ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝑥 ) | 
| 6 | 2 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Fin ) | 
| 7 | 1 6 3 | hashiun | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝑥 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) ) | 
| 8 | 5 7 | eqtrid | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝐴 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) ) |