Description: The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hashuni.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
hashuni.2 | ⊢ ( 𝜑 → 𝐴 ⊆ Fin ) | ||
hashuni.3 | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝑥 ) | ||
Assertion | hashuni | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝐴 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashuni.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
2 | hashuni.2 | ⊢ ( 𝜑 → 𝐴 ⊆ Fin ) | |
3 | hashuni.3 | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝑥 ) | |
4 | uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
5 | 4 | fveq2i | ⊢ ( ♯ ‘ ∪ 𝐴 ) = ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝑥 ) |
6 | 2 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ Fin ) |
7 | 1 6 3 | hashiun | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝑥 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) ) |
8 | 5 7 | eqtrid | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝐴 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝑥 ) ) |