Step |
Hyp |
Ref |
Expression |
1 |
|
hashunlei.c |
⊢ 𝐶 = ( 𝐴 ∪ 𝐵 ) |
2 |
|
hashunlei.a |
⊢ ( 𝐴 ∈ Fin ∧ ( ♯ ‘ 𝐴 ) ≤ 𝐾 ) |
3 |
|
hashunlei.b |
⊢ ( 𝐵 ∈ Fin ∧ ( ♯ ‘ 𝐵 ) ≤ 𝑀 ) |
4 |
|
hashunlei.k |
⊢ 𝐾 ∈ ℕ0 |
5 |
|
hashunlei.m |
⊢ 𝑀 ∈ ℕ0 |
6 |
|
hashunlei.n |
⊢ ( 𝐾 + 𝑀 ) = 𝑁 |
7 |
2
|
simpli |
⊢ 𝐴 ∈ Fin |
8 |
3
|
simpli |
⊢ 𝐵 ∈ Fin |
9 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
10 |
7 8 9
|
mp2an |
⊢ ( 𝐴 ∪ 𝐵 ) ∈ Fin |
11 |
1 10
|
eqeltri |
⊢ 𝐶 ∈ Fin |
12 |
1
|
fveq2i |
⊢ ( ♯ ‘ 𝐶 ) = ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) |
13 |
|
hashun2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
14 |
7 8 13
|
mp2an |
⊢ ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) |
15 |
12 14
|
eqbrtri |
⊢ ( ♯ ‘ 𝐶 ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) |
16 |
2
|
simpri |
⊢ ( ♯ ‘ 𝐴 ) ≤ 𝐾 |
17 |
3
|
simpri |
⊢ ( ♯ ‘ 𝐵 ) ≤ 𝑀 |
18 |
|
hashcl |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
19 |
7 18
|
ax-mp |
⊢ ( ♯ ‘ 𝐴 ) ∈ ℕ0 |
20 |
19
|
nn0rei |
⊢ ( ♯ ‘ 𝐴 ) ∈ ℝ |
21 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
22 |
8 21
|
ax-mp |
⊢ ( ♯ ‘ 𝐵 ) ∈ ℕ0 |
23 |
22
|
nn0rei |
⊢ ( ♯ ‘ 𝐵 ) ∈ ℝ |
24 |
4
|
nn0rei |
⊢ 𝐾 ∈ ℝ |
25 |
5
|
nn0rei |
⊢ 𝑀 ∈ ℝ |
26 |
20 23 24 25
|
le2addi |
⊢ ( ( ( ♯ ‘ 𝐴 ) ≤ 𝐾 ∧ ( ♯ ‘ 𝐵 ) ≤ 𝑀 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ ( 𝐾 + 𝑀 ) ) |
27 |
16 17 26
|
mp2an |
⊢ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ ( 𝐾 + 𝑀 ) |
28 |
27 6
|
breqtri |
⊢ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝑁 |
29 |
|
hashcl |
⊢ ( 𝐶 ∈ Fin → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
30 |
11 29
|
ax-mp |
⊢ ( ♯ ‘ 𝐶 ) ∈ ℕ0 |
31 |
30
|
nn0rei |
⊢ ( ♯ ‘ 𝐶 ) ∈ ℝ |
32 |
20 23
|
readdcli |
⊢ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℝ |
33 |
24 25
|
readdcli |
⊢ ( 𝐾 + 𝑀 ) ∈ ℝ |
34 |
6 33
|
eqeltrri |
⊢ 𝑁 ∈ ℝ |
35 |
31 32 34
|
letri |
⊢ ( ( ( ♯ ‘ 𝐶 ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ≤ 𝑁 ) → ( ♯ ‘ 𝐶 ) ≤ 𝑁 ) |
36 |
15 28 35
|
mp2an |
⊢ ( ♯ ‘ 𝐶 ) ≤ 𝑁 |
37 |
11 36
|
pm3.2i |
⊢ ( 𝐶 ∈ Fin ∧ ( ♯ ‘ 𝐶 ) ≤ 𝑁 ) |