Step |
Hyp |
Ref |
Expression |
1 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |
2 |
|
snfi |
⊢ { 𝐵 } ∈ Fin |
3 |
|
hashun |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝐵 } ∈ Fin ∧ ( 𝐴 ∩ { 𝐵 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝐵 } ) ) ) |
4 |
2 3
|
mp3an2 |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∩ { 𝐵 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝐵 } ) ) ) |
5 |
1 4
|
sylan2br |
⊢ ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝐵 } ) ) ) |
6 |
|
hashsng |
⊢ ( 𝐵 ∈ 𝑉 → ( ♯ ‘ { 𝐵 } ) = 1 ) |
7 |
6
|
oveq2d |
⊢ ( 𝐵 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
8 |
5 7
|
sylan9eq |
⊢ ( ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴 ) ∧ 𝐵 ∈ 𝑉 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) |
9 |
8
|
expcom |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐴 ∈ Fin ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) + 1 ) ) ) |