Step |
Hyp |
Ref |
Expression |
1 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |
2 |
|
snfi |
⊢ { 𝐵 } ∈ Fin |
3 |
|
hashunx |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝐵 } ∈ Fin ∧ ( 𝐴 ∩ { 𝐵 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) ) |
4 |
2 3
|
mp3an2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐴 ∩ { 𝐵 } ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) ) |
5 |
1 4
|
sylan2br |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) ) |
7 |
|
hashsng |
⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ { 𝐵 } ) = 1 ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ { 𝐵 } ) = 1 ) |
9 |
8
|
oveq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) |
10 |
6 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) |
11 |
10
|
3expia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐵 ∈ 𝐴 → ( ♯ ‘ ( 𝐴 ∪ { 𝐵 } ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 1 ) ) ) |