| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjsn | 
							⊢ ( ( 𝐴  ∩  { 𝐵 } )  =  ∅  ↔  ¬  𝐵  ∈  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							snfi | 
							⊢ { 𝐵 }  ∈  Fin  | 
						
						
							| 3 | 
							
								
							 | 
							hashunx | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  { 𝐵 }  ∈  Fin  ∧  ( 𝐴  ∩  { 𝐵 } )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							mp3an2 | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐴  ∩  { 𝐵 } )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							sylan2br | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							hashsng | 
							⊢ ( 𝐵  ∈  𝑊  →  ( ♯ ‘ { 𝐵 } )  =  1 )  | 
						
						
							| 8 | 
							
								7
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ♯ ‘ { 𝐵 } )  =  1 )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq2d | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  1 ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  1 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							3expia | 
							⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ¬  𝐵  ∈  𝐴  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  1 ) ) )  |