| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disjsn | ⊢ ( ( 𝐴  ∩  { 𝐵 } )  =  ∅  ↔  ¬  𝐵  ∈  𝐴 ) | 
						
							| 2 |  | snfi | ⊢ { 𝐵 }  ∈  Fin | 
						
							| 3 |  | hashunx | ⊢ ( ( 𝐴  ∈  𝑉  ∧  { 𝐵 }  ∈  Fin  ∧  ( 𝐴  ∩  { 𝐵 } )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) ) ) | 
						
							| 4 | 2 3 | mp3an2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐴  ∩  { 𝐵 } )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) ) ) | 
						
							| 5 | 1 4 | sylan2br | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) ) ) | 
						
							| 6 | 5 | 3adant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) ) ) | 
						
							| 7 |  | hashsng | ⊢ ( 𝐵  ∈  𝑊  →  ( ♯ ‘ { 𝐵 } )  =  1 ) | 
						
							| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ♯ ‘ { 𝐵 } )  =  1 ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  1 ) ) | 
						
							| 10 | 6 9 | eqtrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ¬  𝐵  ∈  𝐴 )  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  1 ) ) | 
						
							| 11 | 10 | 3expia | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ¬  𝐵  ∈  𝐴  →  ( ♯ ‘ ( 𝐴  ∪  { 𝐵 } ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  1 ) ) ) |