| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashun | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 2 | 1 | 3expa | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 3 |  | hashcl | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℕ0 ) | 
						
							| 4 | 3 | nn0red | ⊢ ( 𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | nn0red | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 7 | 4 6 | anim12i | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( ♯ ‘ 𝐴 )  ∈  ℝ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( ♯ ‘ 𝐴 )  ∈  ℝ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℝ ) ) | 
						
							| 9 |  | rexadd | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℝ  ∧  ( ♯ ‘ 𝐵 )  ∈  ℝ )  →  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 12 | 2 11 | eqtrd | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 13 | 12 | expcom | ⊢ ( ( 𝐴  ∩  𝐵 )  =  ∅  →  ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 15 |  | unexg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 16 |  | unfir | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  Fin  →  ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin ) ) | 
						
							| 17 | 16 | con3i | ⊢ ( ¬  ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ¬  ( 𝐴  ∪  𝐵 )  ∈  Fin ) | 
						
							| 18 |  | hashinf | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ∈  V  ∧  ¬  ( 𝐴  ∪  𝐵 )  ∈  Fin )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  +∞ ) | 
						
							| 19 | 15 17 18 | syl2anr | ⊢ ( ( ¬  ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  +∞ ) | 
						
							| 20 |  | ianor | ⊢ ( ¬  ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  ↔  ( ¬  𝐴  ∈  Fin  ∨  ¬  𝐵  ∈  Fin ) ) | 
						
							| 21 |  | simprl | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 22 |  | simprr | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  𝐵  ∈  𝑊 ) | 
						
							| 23 |  | hashnfinnn0 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  Fin )  →  ( ♯ ‘ 𝐴 )  ∉  ℕ0 ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( ¬  𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∉  ℕ0 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ¬  𝐴  ∈  Fin  →  ( ♯ ‘ 𝐴 )  ∉  ℕ0 ) ) | 
						
							| 26 | 25 | impcom | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ♯ ‘ 𝐴 )  ∉  ℕ0 ) | 
						
							| 27 |  | hashinfxadd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ( ♯ ‘ 𝐴 )  ∉  ℕ0 )  →  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) )  =  +∞ ) | 
						
							| 28 | 21 22 26 27 | syl3anc | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) )  =  +∞ ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( ( ¬  𝐴  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  +∞  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 30 | 29 | ex | ⊢ ( ¬  𝐴  ∈  Fin  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  +∞  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 31 |  | hashxrcl | ⊢ ( 𝐴  ∈  𝑉  →  ( ♯ ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 32 |  | hashxrcl | ⊢ ( 𝐵  ∈  𝑊  →  ( ♯ ‘ 𝐵 )  ∈  ℝ* ) | 
						
							| 33 | 31 32 | anim12i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ( ♯ ‘ 𝐴 )  ∈  ℝ*  ∧  ( ♯ ‘ 𝐵 )  ∈  ℝ* ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ¬  𝐵  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ( ♯ ‘ 𝐴 )  ∈  ℝ*  ∧  ( ♯ ‘ 𝐵 )  ∈  ℝ* ) ) | 
						
							| 35 |  | xaddcom | ⊢ ( ( ( ♯ ‘ 𝐴 )  ∈  ℝ*  ∧  ( ♯ ‘ 𝐵 )  ∈  ℝ* )  →  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) )  =  ( ( ♯ ‘ 𝐵 )  +𝑒  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( ¬  𝐵  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) )  =  ( ( ♯ ‘ 𝐵 )  +𝑒  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 37 |  | simprr | ⊢ ( ( ¬  𝐵  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  𝐵  ∈  𝑊 ) | 
						
							| 38 |  | simprl | ⊢ ( ( ¬  𝐵  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 39 |  | hashnfinnn0 | ⊢ ( ( 𝐵  ∈  𝑊  ∧  ¬  𝐵  ∈  Fin )  →  ( ♯ ‘ 𝐵 )  ∉  ℕ0 ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝐵  ∈  𝑊  →  ( ¬  𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∉  ℕ0 ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ¬  𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∉  ℕ0 ) ) | 
						
							| 42 | 41 | impcom | ⊢ ( ( ¬  𝐵  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ♯ ‘ 𝐵 )  ∉  ℕ0 ) | 
						
							| 43 |  | hashinfxadd | ⊢ ( ( 𝐵  ∈  𝑊  ∧  𝐴  ∈  𝑉  ∧  ( ♯ ‘ 𝐵 )  ∉  ℕ0 )  →  ( ( ♯ ‘ 𝐵 )  +𝑒  ( ♯ ‘ 𝐴 ) )  =  +∞ ) | 
						
							| 44 | 37 38 42 43 | syl3anc | ⊢ ( ( ¬  𝐵  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ( ♯ ‘ 𝐵 )  +𝑒  ( ♯ ‘ 𝐴 ) )  =  +∞ ) | 
						
							| 45 | 36 44 | eqtrd | ⊢ ( ( ¬  𝐵  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) )  =  +∞ ) | 
						
							| 46 | 45 | eqcomd | ⊢ ( ( ¬  𝐵  ∈  Fin  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  +∞  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 47 | 46 | ex | ⊢ ( ¬  𝐵  ∈  Fin  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  +∞  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 48 | 30 47 | jaoi | ⊢ ( ( ¬  𝐴  ∈  Fin  ∨  ¬  𝐵  ∈  Fin )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  +∞  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 49 | 20 48 | sylbi | ⊢ ( ¬  ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  +∞  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 50 | 49 | imp | ⊢ ( ( ¬  ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  +∞  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 51 | 19 50 | eqtrd | ⊢ ( ( ¬  ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 ) )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 52 | 51 | expcom | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊 )  →  ( ¬  ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 53 | 52 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ¬  ( 𝐴  ∈  Fin  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 54 | 14 53 | pm2.61d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  ( 𝐴  ∩  𝐵 )  =  ∅ )  →  ( ♯ ‘ ( 𝐴  ∪  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +𝑒  ( ♯ ‘ 𝐵 ) ) ) |