| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnn0pnf |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) ) |
| 2 |
|
elnn0 |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ↔ ( ( ♯ ‘ 𝑀 ) ∈ ℕ ∨ ( ♯ ‘ 𝑀 ) = 0 ) ) |
| 3 |
|
exmidne |
⊢ ( ( ♯ ‘ 𝑀 ) = 1 ∨ ( ♯ ‘ 𝑀 ) ≠ 1 ) |
| 4 |
|
nngt1ne1 |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( 1 < ( ♯ ‘ 𝑀 ) ↔ ( ♯ ‘ 𝑀 ) ≠ 1 ) ) |
| 5 |
4
|
orbi2d |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( ( ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ↔ ( ( ♯ ‘ 𝑀 ) = 1 ∨ ( ♯ ‘ 𝑀 ) ≠ 1 ) ) ) |
| 6 |
3 5
|
mpbiri |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 7 |
6
|
olcd |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) ) |
| 8 |
|
3orass |
⊢ ( ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ↔ ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) ) |
| 9 |
7 8
|
sylibr |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 10 |
|
3mix1 |
⊢ ( ( ♯ ‘ 𝑀 ) = 0 → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 11 |
9 10
|
jaoi |
⊢ ( ( ( ♯ ‘ 𝑀 ) ∈ ℕ ∨ ( ♯ ‘ 𝑀 ) = 0 ) → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 12 |
2 11
|
sylbi |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 13 |
|
1re |
⊢ 1 ∈ ℝ |
| 14 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
| 15 |
13 14
|
ax-mp |
⊢ 1 < +∞ |
| 16 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑀 ) = +∞ → ( 1 < ( ♯ ‘ 𝑀 ) ↔ 1 < +∞ ) ) |
| 17 |
15 16
|
mpbiri |
⊢ ( ( ♯ ‘ 𝑀 ) = +∞ → 1 < ( ♯ ‘ 𝑀 ) ) |
| 18 |
17
|
3mix3d |
⊢ ( ( ♯ ‘ 𝑀 ) = +∞ → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 19 |
12 18
|
jaoi |
⊢ ( ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑀 ) = +∞ ) → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |
| 20 |
1 19
|
syl |
⊢ ( 𝑀 ∈ 𝑉 → ( ( ♯ ‘ 𝑀 ) = 0 ∨ ( ♯ ‘ 𝑀 ) = 1 ∨ 1 < ( ♯ ‘ 𝑀 ) ) ) |