Metamath Proof Explorer


Theorem hashvnfin

Description: A set of finite size is a finite set. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion hashvnfin ( ( 𝑆𝑉𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) = 𝑁𝑆 ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 eleq1a ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑆 ) = 𝑁 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) )
2 1 adantl ( ( 𝑆𝑉𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) = 𝑁 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) )
3 hashclb ( 𝑆𝑉 → ( 𝑆 ∈ Fin ↔ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) )
4 3 bicomd ( 𝑆𝑉 → ( ( ♯ ‘ 𝑆 ) ∈ ℕ0𝑆 ∈ Fin ) )
5 4 adantr ( ( 𝑆𝑉𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) ∈ ℕ0𝑆 ∈ Fin ) )
6 2 5 sylibd ( ( 𝑆𝑉𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) = 𝑁𝑆 ∈ Fin ) )