Description: A set of finite size is a finite set. (Contributed by Alexander van der Vekens, 8-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashvnfin | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) = 𝑁 → 𝑆 ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑆 ) = 𝑁 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) = 𝑁 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) ) |
| 3 | hashclb | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝑆 ∈ Fin ↔ ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) ) | |
| 4 | 3 | bicomd | ⊢ ( 𝑆 ∈ 𝑉 → ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 ↔ 𝑆 ∈ Fin ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 ↔ 𝑆 ∈ Fin ) ) |
| 6 | 2 5 | sylibd | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) = 𝑁 → 𝑆 ∈ Fin ) ) |