| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wrdnval |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) |
| 2 |
1
|
fveq2d |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) = ( ♯ ‘ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) ) |
| 3 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
| 4 |
|
hashmap |
⊢ ( ( 𝑉 ∈ Fin ∧ ( 0 ..^ 𝑁 ) ∈ Fin ) → ( ♯ ‘ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ 𝑉 ) ↑ ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) |
| 5 |
3 4
|
mpan2 |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ 𝑉 ) ↑ ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) |
| 6 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑉 ) ↑ ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) |
| 8 |
5 7
|
sylan9eq |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 𝑉 ↑m ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) |
| 9 |
2 8
|
eqtrd |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) = ( ( ♯ ‘ 𝑉 ) ↑ 𝑁 ) ) |