Metamath Proof Explorer


Theorem hashxnn0

Description: The value of the hash function for a set is an extended nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 10-Dec-2020)

Ref Expression
Assertion hashxnn0 ( 𝑀𝑉 → ( ♯ ‘ 𝑀 ) ∈ ℕ0* )

Proof

Step Hyp Ref Expression
1 hashfxnn0 ♯ : V ⟶ ℕ0*
2 1 a1i ( 𝑀𝑉 → ♯ : V ⟶ ℕ0* )
3 elex ( 𝑀𝑉𝑀 ∈ V )
4 2 3 ffvelrnd ( 𝑀𝑉 → ( ♯ ‘ 𝑀 ) ∈ ℕ0* )