Step |
Hyp |
Ref |
Expression |
1 |
|
hashxplem.1 |
⊢ 𝐵 ∈ Fin |
2 |
|
xpeq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 × 𝐵 ) = ( ∅ × 𝐵 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ♯ ‘ ( ∅ × 𝐵 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ ∅ ) · ( ♯ ‘ 𝐵 ) ) ) |
6 |
3 5
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) ↔ ( ♯ ‘ ( ∅ × 𝐵 ) ) = ( ( ♯ ‘ ∅ ) · ( ♯ ‘ 𝐵 ) ) ) ) |
7 |
|
xpeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 × 𝐵 ) = ( 𝑦 × 𝐵 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ♯ ‘ ( 𝑦 × 𝐵 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) |
11 |
8 10
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) ↔ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) ) |
12 |
|
xpeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 × 𝐵 ) = ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) ↔ ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) ) ) |
17 |
|
xpeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 × 𝐵 ) = ( 𝐴 × 𝐵 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ♯ ‘ ( 𝐴 × 𝐵 ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
21 |
18 20
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ ( 𝑥 × 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) · ( ♯ ‘ 𝐵 ) ) ↔ ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) ) |
22 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
23 |
22
|
nn0cnd |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
24 |
23
|
mul02d |
⊢ ( 𝐵 ∈ Fin → ( 0 · ( ♯ ‘ 𝐵 ) ) = 0 ) |
25 |
1 24
|
ax-mp |
⊢ ( 0 · ( ♯ ‘ 𝐵 ) ) = 0 |
26 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
27 |
26
|
oveq1i |
⊢ ( ( ♯ ‘ ∅ ) · ( ♯ ‘ 𝐵 ) ) = ( 0 · ( ♯ ‘ 𝐵 ) ) |
28 |
|
0xp |
⊢ ( ∅ × 𝐵 ) = ∅ |
29 |
28
|
fveq2i |
⊢ ( ♯ ‘ ( ∅ × 𝐵 ) ) = ( ♯ ‘ ∅ ) |
30 |
29 26
|
eqtri |
⊢ ( ♯ ‘ ( ∅ × 𝐵 ) ) = 0 |
31 |
25 27 30
|
3eqtr4ri |
⊢ ( ♯ ‘ ( ∅ × 𝐵 ) ) = ( ( ♯ ‘ ∅ ) · ( ♯ ‘ 𝐵 ) ) |
32 |
|
oveq1 |
⊢ ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) → ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
34 |
|
xpundir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) = ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) |
35 |
34
|
fveq2i |
⊢ ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) |
36 |
|
xpfi |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( 𝑦 × 𝐵 ) ∈ Fin ) |
37 |
1 36
|
mpan2 |
⊢ ( 𝑦 ∈ Fin → ( 𝑦 × 𝐵 ) ∈ Fin ) |
38 |
|
inxp |
⊢ ( ( 𝑦 × 𝐵 ) ∩ ( { 𝑧 } × 𝐵 ) ) = ( ( 𝑦 ∩ { 𝑧 } ) × ( 𝐵 ∩ 𝐵 ) ) |
39 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
40 |
39
|
biimpri |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
41 |
40
|
xpeq1d |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 ∩ { 𝑧 } ) × ( 𝐵 ∩ 𝐵 ) ) = ( ∅ × ( 𝐵 ∩ 𝐵 ) ) ) |
42 |
|
0xp |
⊢ ( ∅ × ( 𝐵 ∩ 𝐵 ) ) = ∅ |
43 |
41 42
|
eqtrdi |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 ∩ { 𝑧 } ) × ( 𝐵 ∩ 𝐵 ) ) = ∅ ) |
44 |
38 43
|
eqtrid |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 × 𝐵 ) ∩ ( { 𝑧 } × 𝐵 ) ) = ∅ ) |
45 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
46 |
|
xpfi |
⊢ ( ( { 𝑧 } ∈ Fin ∧ 𝐵 ∈ Fin ) → ( { 𝑧 } × 𝐵 ) ∈ Fin ) |
47 |
45 1 46
|
mp2an |
⊢ ( { 𝑧 } × 𝐵 ) ∈ Fin |
48 |
|
hashun |
⊢ ( ( ( 𝑦 × 𝐵 ) ∈ Fin ∧ ( { 𝑧 } × 𝐵 ) ∈ Fin ∧ ( ( 𝑦 × 𝐵 ) ∩ ( { 𝑧 } × 𝐵 ) ) = ∅ ) → ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) ) ) |
49 |
47 48
|
mp3an2 |
⊢ ( ( ( 𝑦 × 𝐵 ) ∈ Fin ∧ ( ( 𝑦 × 𝐵 ) ∩ ( { 𝑧 } × 𝐵 ) ) = ∅ ) → ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) ) ) |
50 |
37 44 49
|
syl2an |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) ) ) |
51 |
|
snex |
⊢ { 𝑧 } ∈ V |
52 |
1
|
elexi |
⊢ 𝐵 ∈ V |
53 |
51 52
|
xpcomen |
⊢ ( { 𝑧 } × 𝐵 ) ≈ ( 𝐵 × { 𝑧 } ) |
54 |
|
vex |
⊢ 𝑧 ∈ V |
55 |
52 54
|
xpsnen |
⊢ ( 𝐵 × { 𝑧 } ) ≈ 𝐵 |
56 |
53 55
|
entri |
⊢ ( { 𝑧 } × 𝐵 ) ≈ 𝐵 |
57 |
|
hashen |
⊢ ( ( ( { 𝑧 } × 𝐵 ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ↔ ( { 𝑧 } × 𝐵 ) ≈ 𝐵 ) ) |
58 |
47 1 57
|
mp2an |
⊢ ( ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) = ( ♯ ‘ 𝐵 ) ↔ ( { 𝑧 } × 𝐵 ) ≈ 𝐵 ) |
59 |
56 58
|
mpbir |
⊢ ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) = ( ♯ ‘ 𝐵 ) |
60 |
59
|
oveq2i |
⊢ ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) |
61 |
50 60
|
eqtrdi |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( ( 𝑦 × 𝐵 ) ∪ ( { 𝑧 } × 𝐵 ) ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
62 |
35 61
|
eqtrid |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
64 |
|
hashunsng |
⊢ ( 𝑧 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
65 |
54 64
|
ax-mp |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
66 |
65
|
oveq1d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) ) |
67 |
|
hashcl |
⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
68 |
67
|
nn0cnd |
⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℂ ) |
69 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
70 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
71 |
1 22 70
|
mp2b |
⊢ ( ♯ ‘ 𝐵 ) ∈ ℂ |
72 |
|
adddir |
⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( 1 · ( ♯ ‘ 𝐵 ) ) ) ) |
73 |
69 71 72
|
mp3an23 |
⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( 1 · ( ♯ ‘ 𝐵 ) ) ) ) |
74 |
68 73
|
syl |
⊢ ( 𝑦 ∈ Fin → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( 1 · ( ♯ ‘ 𝐵 ) ) ) ) |
75 |
71
|
mulid2i |
⊢ ( 1 · ( ♯ ‘ 𝐵 ) ) = ( ♯ ‘ 𝐵 ) |
76 |
75
|
oveq2i |
⊢ ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( 1 · ( ♯ ‘ 𝐵 ) ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) |
77 |
74 76
|
eqtrdi |
⊢ ( 𝑦 ∈ Fin → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
79 |
66 78
|
eqtrd |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) = ( ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) + ( ♯ ‘ 𝐵 ) ) ) |
81 |
33 63 80
|
3eqtr4d |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) ) |
82 |
81
|
ex |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ♯ ‘ ( 𝑦 × 𝐵 ) ) = ( ( ♯ ‘ 𝑦 ) · ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ ( ( 𝑦 ∪ { 𝑧 } ) × 𝐵 ) ) = ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) · ( ♯ ‘ 𝐵 ) ) ) ) |
83 |
6 11 16 21 31 82
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |