Metamath Proof Explorer


Theorem hashxrcl

Description: Extended real closure of the # function. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion hashxrcl ( 𝐴𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 nn0ssre 0 ⊆ ℝ
2 ressxr ℝ ⊆ ℝ*
3 1 2 sstri 0 ⊆ ℝ*
4 pnfxr +∞ ∈ ℝ*
5 snssi ( +∞ ∈ ℝ* → { +∞ } ⊆ ℝ* )
6 4 5 ax-mp { +∞ } ⊆ ℝ*
7 3 6 unssi ( ℕ0 ∪ { +∞ } ) ⊆ ℝ*
8 elex ( 𝐴𝑉𝐴 ∈ V )
9 hashf ♯ : V ⟶ ( ℕ0 ∪ { +∞ } )
10 9 ffvelrni ( 𝐴 ∈ V → ( ♯ ‘ 𝐴 ) ∈ ( ℕ0 ∪ { +∞ } ) )
11 8 10 syl ( 𝐴𝑉 → ( ♯ ‘ 𝐴 ) ∈ ( ℕ0 ∪ { +∞ } ) )
12 7 11 sselid ( 𝐴𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* )