Description: Extended real closure of the # function. (Contributed by Mario Carneiro, 22-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashxrcl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre | ⊢ ℕ0 ⊆ ℝ | |
| 2 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 3 | 1 2 | sstri | ⊢ ℕ0 ⊆ ℝ* |
| 4 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 5 | snssi | ⊢ ( +∞ ∈ ℝ* → { +∞ } ⊆ ℝ* ) | |
| 6 | 4 5 | ax-mp | ⊢ { +∞ } ⊆ ℝ* |
| 7 | 3 6 | unssi | ⊢ ( ℕ0 ∪ { +∞ } ) ⊆ ℝ* |
| 8 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 9 | hashf | ⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) | |
| 10 | 9 | ffvelcdmi | ⊢ ( 𝐴 ∈ V → ( ♯ ‘ 𝐴 ) ∈ ( ℕ0 ∪ { +∞ } ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ( ℕ0 ∪ { +∞ } ) ) |
| 12 | 7 11 | sselid | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |