Metamath Proof Explorer


Theorem hatomic

Description: A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in Kalmbach p. 140. Also Definition 3.4-2 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hatomic ( ( 𝐴C𝐴 ≠ 0 ) → ∃ 𝑥 ∈ HAtoms 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 neeq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 ≠ 0 ↔ if ( 𝐴C , 𝐴 , 0 ) ≠ 0 ) )
2 sseq2 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝑥𝐴𝑥 ⊆ if ( 𝐴C , 𝐴 , 0 ) ) )
3 2 rexbidv ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ∃ 𝑥 ∈ HAtoms 𝑥𝐴 ↔ ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ if ( 𝐴C , 𝐴 , 0 ) ) )
4 1 3 imbi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐴 ≠ 0 → ∃ 𝑥 ∈ HAtoms 𝑥𝐴 ) ↔ ( if ( 𝐴C , 𝐴 , 0 ) ≠ 0 → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ if ( 𝐴C , 𝐴 , 0 ) ) ) )
5 h0elch 0C
6 5 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
7 6 hatomici ( if ( 𝐴C , 𝐴 , 0 ) ≠ 0 → ∃ 𝑥 ∈ HAtoms 𝑥 ⊆ if ( 𝐴C , 𝐴 , 0 ) )
8 4 7 dedth ( 𝐴C → ( 𝐴 ≠ 0 → ∃ 𝑥 ∈ HAtoms 𝑥𝐴 ) )
9 8 imp ( ( 𝐴C𝐴 ≠ 0 ) → ∃ 𝑥 ∈ HAtoms 𝑥𝐴 )