Step |
Hyp |
Ref |
Expression |
1 |
|
hatomistic.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
ssrab2 |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ HAtoms |
3 |
|
atssch |
⊢ HAtoms ⊆ Cℋ |
4 |
2 3
|
sstri |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ |
5 |
|
chsupcl |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∈ Cℋ ) |
6 |
4 5
|
ax-mp |
⊢ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∈ Cℋ |
7 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
8 |
|
atelch |
⊢ ( 𝑦 ∈ HAtoms → 𝑦 ∈ Cℋ ) |
9 |
8
|
anim1i |
⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴 ) ) |
10 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
11 |
10
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ↔ ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴 ) ) |
12 |
10
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ↔ ( 𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴 ) ) |
13 |
9 11 12
|
3imtr4i |
⊢ ( 𝑦 ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → 𝑦 ∈ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) |
14 |
13
|
ssriv |
⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } |
15 |
|
ssrab2 |
⊢ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ |
16 |
|
chsupss |
⊢ ( ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ ∧ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ ) → ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
17 |
4 15 16
|
mp2an |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) ) |
18 |
14 17
|
ax-mp |
⊢ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) |
19 |
|
chsupid |
⊢ ( 𝐴 ∈ Cℋ → ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 ) |
20 |
1 19
|
ax-mp |
⊢ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 |
21 |
18 20
|
sseqtri |
⊢ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ 𝐴 |
22 |
|
elssuni |
⊢ ( 𝑦 ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → 𝑦 ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
23 |
11 22
|
sylbir |
⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
24 |
|
chsupunss |
⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ → ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
25 |
4 24
|
ax-mp |
⊢ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
26 |
23 25
|
sstrdi |
⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
27 |
26
|
ex |
⊢ ( 𝑦 ∈ HAtoms → ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
28 |
|
atne0 |
⊢ ( 𝑦 ∈ HAtoms → 𝑦 ≠ 0ℋ ) |
29 |
28
|
adantr |
⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → 𝑦 ≠ 0ℋ ) |
30 |
|
ssin |
⊢ ( ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ 𝑦 ⊆ ( ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
31 |
6
|
chocini |
⊢ ( ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) = 0ℋ |
32 |
31
|
sseq2i |
⊢ ( 𝑦 ⊆ ( ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ 𝑦 ⊆ 0ℋ ) |
33 |
30 32
|
bitr2i |
⊢ ( 𝑦 ⊆ 0ℋ ↔ ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
34 |
|
chle0 |
⊢ ( 𝑦 ∈ Cℋ → ( 𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ ) ) |
35 |
8 34
|
syl |
⊢ ( 𝑦 ∈ HAtoms → ( 𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ ) ) |
36 |
33 35
|
bitr3id |
⊢ ( 𝑦 ∈ HAtoms → ( ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ 𝑦 = 0ℋ ) ) |
37 |
36
|
biimpa |
⊢ ( ( 𝑦 ∈ HAtoms ∧ ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) → 𝑦 = 0ℋ ) |
38 |
37
|
expr |
⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → ( 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → 𝑦 = 0ℋ ) ) |
39 |
38
|
necon3ad |
⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → ( 𝑦 ≠ 0ℋ → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
40 |
29 39
|
mpd |
⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
41 |
40
|
ex |
⊢ ( 𝑦 ∈ HAtoms → ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
42 |
27 41
|
syld |
⊢ ( 𝑦 ∈ HAtoms → ( 𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
43 |
|
imnan |
⊢ ( ( 𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ ¬ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
44 |
42 43
|
sylib |
⊢ ( 𝑦 ∈ HAtoms → ¬ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
45 |
|
ssin |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
46 |
44 45
|
sylnib |
⊢ ( 𝑦 ∈ HAtoms → ¬ 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
47 |
46
|
nrex |
⊢ ¬ ∃ 𝑦 ∈ HAtoms 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
48 |
6
|
choccli |
⊢ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ∈ Cℋ |
49 |
1 48
|
chincli |
⊢ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ∈ Cℋ |
50 |
49
|
hatomici |
⊢ ( ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ≠ 0ℋ → ∃ 𝑦 ∈ HAtoms 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
51 |
50
|
necon1bi |
⊢ ( ¬ ∃ 𝑦 ∈ HAtoms 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) → ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) = 0ℋ ) |
52 |
47 51
|
ax-mp |
⊢ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) = 0ℋ |
53 |
6 7 21 52
|
omlsii |
⊢ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 |
54 |
53
|
eqcomi |
⊢ 𝐴 = ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |