| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hausflf.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | n0 | ⊢ ( ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) ) | 
						
							| 3 | 2 | biimpi | ⊢ ( ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ≠  ∅  →  ∃ 𝑥 𝑥  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) ) | 
						
							| 4 | 1 | hausflf | ⊢ ( ( 𝐽  ∈  Haus  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  →  ∃* 𝑥 𝑥  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) ) | 
						
							| 5 |  | euen1b | ⊢ ( ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ≈  1o  ↔  ∃! 𝑥 𝑥  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) ) | 
						
							| 6 |  | df-eu | ⊢ ( ∃! 𝑥 𝑥  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ↔  ( ∃ 𝑥 𝑥  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ∧  ∃* 𝑥 𝑥  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) ) ) | 
						
							| 7 | 5 6 | sylbbr | ⊢ ( ( ∃ 𝑥 𝑥  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ∧  ∃* 𝑥 𝑥  ∈  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 ) )  →  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ≈  1o ) | 
						
							| 8 | 3 4 7 | syl2anr | ⊢ ( ( ( 𝐽  ∈  Haus  ∧  𝐿  ∈  ( Fil ‘ 𝑌 )  ∧  𝐹 : 𝑌 ⟶ 𝑋 )  ∧  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ≠  ∅ )  →  ( ( 𝐽  fLimf  𝐿 ) ‘ 𝐹 )  ≈  1o ) |